PSO for training a regular Autoencoder.
Version 1.1.0 (2,16 Mo) par
BERGHOUT Tarek
we used particle swarm optimization (PSO) for training an Autoencoder.
Particle swarm optimization is one the most well known based random search Algorithms in optimization.
In these codes and based on the references bellow, we introduce to you a fully connected regular autoencoder trained by PSO.
[1]ssM. N. Alam, “Particle Swarm Optimization : Algorithm and its Codes in MATLAB Particle Swarm Optimization : Algorithm and its Codes in MATLAB,” no. March, 2016.
[2]ssY. Liu, B. He, D. Dong, Y. Shen, and T. Yan, “ROS-ELM: A Robust Online Sequential Extreme Learning Machine for Big Data Analytics,” Proc. ELM-2014 Vol. 1, Algorthims Theor., vol. 3, pp. 325–344, 2015.
[3]ssH. Zhou, G.-B. Huang, Z. Lin, H. Wang, and Y. C. Soh, “Stacked Extreme Learning Machines.,” IEEE Trans. Cybern., vol. PP, no. 99, p. 1, 2014.
Citation pour cette source
BERGHOUT Tarek (2024). PSO for training a regular Autoencoder. (https://www.mathworks.com/matlabcentral/fileexchange/72388-pso-for-training-a-regular-autoencoder), MATLAB Central File Exchange. Extrait(e) le .
Compatibilité avec les versions de MATLAB
Créé avec
R2013b
Compatible avec les versions R2013b et ultérieures
Plateformes compatibles
Windows macOS LinuxCatégories
En savoir plus sur Particle Swarm dans Help Center et MATLAB Answers
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
Loukmane
Loukmane/AE
Loukmane/NEW_PSO
Version | Publié le | Notes de version | |
---|---|---|---|
1.1.0 | Nothing changed - - just removed graphical abstract (image) |
||
1.0.0 |