Deep Learning For Time Series Data
The examples showcase two ways of using deep learning for classifying time-series data, i.e. ECG data. The first way is using continuous wavelet transform and transfer learning, whereas the second way is using Wavelet Scattering and LSTMs. The explanations of the code are in Chinese. The used data set can be download on:https://github.com/mathworks/physionet_ECG_data/
The video series (in Chinese) on this topic can be found as follows:
https://www.mathworks.com/videos/series/deep-learning-for-time-series-data.html
Citation pour cette source
MathWorks Student Competitions Team (2026). Deep Learning For Time Series Data (https://github.com/mathworks/deep-learning-for-time-series-data/releases/tag/v1.0.2), GitHub. Extrait(e) le .
Compatibilité avec les versions de MATLAB
Plateformes compatibles
Windows macOS LinuxTags
Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
| Version | Publié le | Notes de version | |
|---|---|---|---|
| 1.0.2 | See release notes for this release on GitHub: https://github.com/mathworks/deep-learning-for-time-series-data/releases/tag/v1.0.2 |
||
| 1.0.1 | See release notes for this release on GitHub: https://github.com/mathworks/deep-learning-for-time-series-data/releases/tag/v1.0.1 |
||
| 1.0 |
