Chaos Game Optimization (CGO)

The Chaos Game Optimization (CGO) algorithm is a simple however efficient optimization meta-heuristic presented. The main concept of the CGO
777 téléchargements
Mise à jour 6 déc. 2020

Afficher la licence

The Chaos Game Optimization (CGO) algorithm is a simple however efficient optimization meta-heuristic presented. The main concept of the CGO algorithm is based on some principles of chaos theory in which the configuration of fractals by chaos game methodology alongside the fractals self-similarity issues are in perspective.
Author and programmer: S. Talatahari, M. Azizi, Email: Siamak.Talat@gmail.com, mehdi.azizi875@gmail.com
Main paper:
1. S. Talatahari, M. Azizi, Chaos Game Optimization: a Novel Metaheuristic Algorithm, Artificial Intelligence Review, 2020, https://doi.org/10.1007/s10462-020-09867-w
2. S. Talatahari, M. Azizi, Optimization of Constrained Mathematical and Engineering Design Problems Using Chaos Game Optimization, Computers & Industrial Engineering, Volume 145, Pages 106560, https://doi.org/10.1016/j.cie.2020.106560

Citation pour cette source

Siamak Talatahari (2024). Chaos Game Optimization (CGO) (https://www.mathworks.com/matlabcentral/fileexchange/83938-chaos-game-optimization-cgo), MATLAB Central File Exchange. Extrait(e) le .

Talatahari, Siamak, and Mahdi Azizi. “Chaos Game Optimization: a Novel Metaheuristic Algorithm.” Artificial Intelligence Review, Springer Science and Business Media LLC, June 2020, doi:10.1007/s10462-020-09867-w.

Afficher d’autres styles

Talatahari, Siamak, and Mahdi Azizi. “Optimization of Constrained Mathematical and Engineering Design Problems Using Chaos Game Optimization.” Computers & Industrial Engineering, vol. 145, Elsevier BV, July 2020, p. 106560, doi:10.1016/j.cie.2020.106560.

Afficher d’autres styles
Compatibilité avec les versions de MATLAB
Créé avec R2020b
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Tags Ajouter des tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version
1.0.0