Ostrogradsky's Method
Syntax:
[P_1,Q_1,P_2,Q_2] = ostrogradskysmethod(P,Q,x)
Description:
For an integral with an integrand that is a proper rational fraction, Ostrogradsky's decomposes the integral as
$\int \frac{P(x)}{Q(x)} \, dx = \frac{P_1(x)}{Q_1(x)} + \int \frac{P_2(x)}{Q_2(x)} \, dx. \tag*{} $
The inputs to ostrogradskysmethod are symbolic polynomials P and Q, with P being lesser degree than Q. The outputs are symbolic polynomials P_1, Q_1, P_2, and Q_2.
Examples:
Use Ostrogradsky's method to decompose an integral with P(x) = x^3-x^2+x+1 and Q(x) = (x^2+1)^3
syms x
P = x^3-x^2+x+1;
Q = (x^2+1)^3;
[P_1,Q_1,P_2,Q_2] = ostrogradskysmethod(P,Q,x)
P_1 =
x^3/4 - x^2/2 + (3*x)/4 - 1/2
Q_1 =
(x^2 + 1)^2
P_2 =
1/4
Q_2 =
x^2 + 1
Take the integral via Ostrogradsky's method and confirm that it matches MATLAB's solution
I = P_1/Q_1+int(P_2/Q_2)
I_c = int(P/Q)
I =
atan(x)/4 + (x^3/4 - x^2/2 + (3*x)/4 - 1/2)/(x^2 + 1)^2
I_c =
atan(x)/4 + (x^3/4 - x^2/2 + (3*x)/4 - 1/2)/(x^2 + 1)^2
Citation pour cette source
Ryan Black (2024). Ostrogradsky's Method (https://www.mathworks.com/matlabcentral/fileexchange/87497-ostrogradsky-s-method), MATLAB Central File Exchange. Extrait(e) le .
Compatibilité avec les versions de MATLAB
Plateformes compatibles
Windows macOS LinuxTags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
Version | Publié le | Notes de version | |
---|---|---|---|
1.0.3 | edit description |
||
1.0.2 | added example |
||
1.0.1 | edit description |
||
1.0.0 |