Supersonic flow over a Cone
Version 1.1.0 (23,7 ko) par
Dyuman Joshi
Numerical Solutions to the Taylor-Maccoll Equation are obtained using 4th order Runge-Kutta Method for a supersonic flow over a cone.
The files provides the numerical procedures used to solve oblique shock relation and Taylor-Maccoll equation. 4th-order Runge-Kutta numerical scheme is employed to implicitly solve the Taylor-Maccoll equations.
Inverse approach is used (J.D. Anderson, Modern Compressible Flow, Section 10.4)
Properties of the flow are calculated for
- A supersonic Mach number
- Zero pitch and yaw
- An in-viscid, perfect gas
Note - The generated shock wave is 3D in nature but as the shock is locally planar, thus is treated locally by the use of 2D oblique shock theory.
Citation pour cette source
Dyuman Joshi (2024). Supersonic flow over a Cone (https://www.mathworks.com/matlabcentral/fileexchange/91055-supersonic-flow-over-a-cone), MATLAB Central File Exchange. Extrait(e) le .
Compatibilité avec les versions de MATLAB
Créé avec
R2021a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS LinuxTags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
Taylor_Maccoll_Supersonic_Cone-master
Version | Publié le | Notes de version | |
---|---|---|---|
1.1.0 | Minor changes to code to improve efficiency. |
||
1.0.0 |