Alpha Vantage data downloader
Version 0.11 (15,7 Mo) par
Artem Lensky
Currently the toolbox implements functions to download company fundamentals and economic indicators.
alphavantage-matlab
Donwload cashflow reports
% replace the "demo" apikey below with your own key from https://www.alphavantage.co/support/#api-key
keyAV = "demo";
symbols = ["TSLA","XPEV", "NIO"]; % Define symbols of interest
cashflowReports = getFundamentals(symbols, "CASH_FLOW", keyAV); % Donwload reports
% convert company reports to a single table
cashflowTable = extractFields(cashflowReports, ["CASH_FLOW", "quarterlyReport"]);Predict selected cashflow indicators
% Variables to predict
indicatorsOfInterest = [ "operatingCashflow",...
"changeInInventory",...
"netIncome"];
for k = 1:length(symbols)
% Retrieve records for a specific ticker
reportPerCompany = findbyValue(cashflowTable, "Symbol", symbols{k});
% preprocess
options = struct("extrapolate", "linear",...
"removeMissingBy", "column",...
"toCategorical", "",...
"removeColumns", ["reportedCurrency", "Symbol",...
"proceedsFromIssuanceOfCommonStock"]);
reportPerCompanyProcessed = preprocess(reportPerCompany, options);
rawData = reportPerCompanyProcessed(:, indicatorsOfInterest).Variables;
Mdl = varm(length(indicatorsOfInterest), 2);
%Mdl.Trend = NaN; % Estimate trend
[normData, means, stds] = normalize(rawData); % normalise the data
EstMdl = estimate(Mdl, normData);
numOfQs = 4; % Forecast numOfQs quarters
futureDates = dateshift(reportPerCompanyProcessed.fiscalDateEnding(end)...
,'end','quarter', 1:numOfQs); % Dates to predict
futureSim = simulate(EstMdl, numOfQs,'Y0', normData,'NumPaths',2000);
futureSim = (futureSim .* stds) + means; % Denormalise
futureSimMean = mean(futureSim, 3); % Calculate means
futureSimStd = std(futureSim, 0, 3); % Calculate std deviations
% Plot the predictions
figure('color', 'white', 'position', [0, 0, 400, 800]), hold('on');
for l = 1:length(varsOfInterest)
subplot(length(varsOfInterest),1, l), hold on
plot(reportPerCompanyProcessed.fiscalDateEnding, rawData(:,l),'k', 'LineWidth', 3);
plot([reportPerCompanyProcessed.fiscalDateEnding(end) futureDates],...
[rawData(end,l); futureSimMean(:, l)],'r', 'LineWidth', 3)
plot([reportPerCompanyProcessed.fiscalDateEnding(end) futureDates],...
[rawData(end,l); futureSimMean(:, l)] + [0; futureSimStd(:, l)],'b', 'LineWidth', 3)
plot([reportPerCompanyProcessed.fiscalDateEnding(end) futureDates],...
[rawData(end,l); futureSimMean(:, l)] - [0; futureSimStd(:, l)],'b', 'LineWidth', 3);
title(varsOfInterest{l});
end
sgtitle(symbols{k});
endDownload Economic Indicators
treasury_yield_3month = getEconomicIndicators("TREASURY_YIELD", keyAV, struct("interval", "daily", "maturity", "3month"));
treasury_yield_5year = getEconomicIndicators("TREASURY_YIELD", keyAV, struct("interval", "daily", "maturity", "5year"));
treasury_yield_10year = getEconomicIndicators("TREASURY_YIELD", keyAV, struct("interval", "daily", "maturity", "10year"));Plot economic indicators
figure('color', 'white'), hold on;
plot(treasury_yield_3month.data.date,treasury_yield_3month.data.value, 'LineWidth', 2);
plot(treasury_yield_5year.data.date, treasury_yield_5year.data.value, 'LineWidth', 2);
plot(treasury_yield_10year.data.date,treasury_yield_10year.data.value, 'LineWidth', 2);
xlabel('date'), ylabel('percent');
title('Treasury yields');
legend({'3 month', '5 year', '10 year'});Donwload SnP500
snp500list = readtable("snp500list.csv");
load reports.mat % comment this line to donwload the data
%reports = getFundamentals(snp500list.Symbol, "ALL", keyAV); % uncommentSummary of SnP500
% preprocess
overviewTable = extractFields(reports, "OVERVIEW");
sectorsLabels = unique(overviewTable.Sector);
removeColumns = ["Symbol","AssetType", "Name", "Description", "Currency",...
"Country","Industry", "Address", "FiscalYearEnd",...
"LatestQuarter", "DividendDate", "ExDividendDate",...
"LastSplitDate"];
options = struct("extrapolate", "linear",...
"removeMissingBy", "row",...
"toCategorical", ["Exchange", "Sector"],...
"removeColumns", removeColumns);
[overviewTableTirm, ind] = preprocess(overviewTable, options);
sectors = unique(overviewTableTirm.Sector);
% plot pie chart
colors = lines(length(sectorsLabels));
figure('color', 'white', 'Position', [1, 1, 800, 600]),
p = subplot(2,2,[1,3]); pie(histcounts(overviewTableTirm.Sector));p.Colormap = lines(7);
lgnd = legend(sectorsLabels, 'Location', 'northoutside'); title(lgnd, 'SnP500');
% plot distributions of selected indicators per sector
colName = {'Beta', 'DividendYield'};
for l = 1:2
subplot(2,2,2*l), hold on,
for k = 1:size(sectors,1)
overviewPerSector{k} = findbyValue(overviewTableTirm, "Sector", sectors(k));
[m, x] = ksdensity(overviewPerSector{k}.(colName{l}), 'Kernel', 'epanechnikov');
plot(x, m,'color', colors(k, :), 'linewidth', 5)
area(x, m, 'FaceColor', colors(k, :), 'FaceAlpha', 0.2);
title(colName{l});
end
endCitation pour cette source
Artem Lensky (2026). Alpha Vantage data downloader (https://github.com/Lenskiy/alphavantage-matlab/releases/tag/v0.11), GitHub. Extrait(e) le .
Compatibilité avec les versions de MATLAB
Créé avec
R2021a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS LinuxTags
Découvrir Live Editor
Créez des scripts avec du code, des résultats et du texte formaté dans un même document exécutable.
| Version | Publié le | Notes de version | |
|---|---|---|---|
| 0.11 |
Pour consulter ou signaler des problèmes liés à ce module complémentaire GitHub, accédez au dépôt GitHub.
Pour consulter ou signaler des problèmes liés à ce module complémentaire GitHub, accédez au dépôt GitHub.





