photo

theodore panagos


Last seen: plus d'un an il y a Actif depuis 2018

Followers: 0   Following: 0

Statistiques

  • 3 Month Streak
  • First Answer

Afficher les badges

Feeds

Afficher par

Réponse apportée
Change the zero angle of the atan2() or similar
The formula give a clockwise angle, from 0 to 2pi. f(x,y)=pi()/2*((1+sign(y0))* (1-sign(x0^2))-(1+sign(y))* (1-sign(x^2)))+pi()...

presque 6 ans il y a | 0

Réponse apportée
Measure angles between two vectors solely counter - clockwise
The formula gives the angle from positive x-axis to 360 degrees counter clockwise: f(x,y)=180-90*(1+sign(x))* (1-sign(y^2))-45*...

presque 6 ans il y a | 1

Réponse apportée
Transform angles that are -180 to +180 to angles that are in the 0-360 degree range?
A formula to calculate an angle counter clockwise from x positive to 360 degrees: f(x,y)=180-90*(1+sign(x))* (1-sign(y^2))-45*(...

presque 6 ans il y a | 0

Réponse apportée
plot x, y and direction
The formula f(E,N) give an angle that starts from the north,is clockwise,runs from 0 to 360 degrees and is used in surveying....

environ 6 ans il y a | 0

Réponse apportée
converting atan2 output to 360 deg
You can use the formula: atan(x,y)=180/pi()*(pi()-p()/2*(1+sign(x))*(1-sign(y^2))-pi()/4*(2+sign(x))*sign(y) ...

environ 6 ans il y a | 1

Réponse apportée
cart2pol angle sin 0 to 2pi range instead of -pi to pi range?
You can use the formula: atan(x,y)=pi()-pi()/2*(1+sign(x))*(1-sign(y^2))-pi()/4*(2+sign(x))*sign(y) -sign(x*y)*atan(...

environ 6 ans il y a | 0

Réponse apportée
How can I determine the angle between two vectors in MATLAB?
Coordinates of two vectors xb,yb and xa,ya . angle(vector.b,vector.a)=pi/2*((1+sgn(xa))*(1-sgn(ya^2))-(1+sgn(xb))*(1-sgn(yb^2...

environ 6 ans il y a | 0

Réponse apportée
Having problems with function theta = acosfull(x,y) command
For acos(x,y) you can use the formula : f(x,y)=pi-pi/2*(1+sgn(x))*(1-sgn(y^2))-pi/4*(2+sgn(x))*sgn(y) -sgn(abs(x)-abs(y))*...

environ 6 ans il y a | 0

Réponse apportée
Changing the atan function so that it ranges from 0 to 2*pi
You can use the formula: x = x2-x1; y = y2-y1; th = pi/2*(1-sign(x))*(1-sign(y^2)) + pi/4*(2-sign(x))*sign(y) - sign(x*y)*ata...

environ 6 ans il y a | 1

Réponse apportée
function to increase the range of inverse sine
You can have the asin(x,y) from 0 to 2*pi by the formula: asin(x,y)=pi-pi/2*(1+sgn(x))*(1-sgn(y^2))-pi/4*(2+sgn(x))*sgn(y) -s...

environ 6 ans il y a | 0