Aramis
Followers: 0 Following: 0
Statistiques
0 Questions
6 Réponses
RANG
12 737
of 295 527
RÉPUTATION
4
CONTRIBUTIONS
0 Questions
6 Réponses
ACCEPTATION DE VOS RÉPONSES
0.00%
VOTES REÇUS
2
RANG
of 20 242
RÉPUTATION
N/A
CLASSEMENT MOYEN
0.00
CONTRIBUTIONS
0 Fichier
TÉLÉCHARGEMENTS
0
ALL TIME TÉLÉCHARGEMENTS
0
RANG
of 154 057
CONTRIBUTIONS
0 Problèmes
0 Solutions
SCORE
0
NOMBRE DE BADGES
0
CONTRIBUTIONS
0 Publications
CONTRIBUTIONS
0 Public Chaîne
CLASSEMENT MOYEN
CONTRIBUTIONS
0 Point fort
NOMBRE MOYEN DE LIKES
Feeds
how to find the element which is greater than or equal to its row and smaller or equal to its column in a matrix
The best solution function s = saddle(M) % Create logical vector that are true for each saddle condition separately m...
5 mois il y a | 0
Sparse Matrix, struct, structure, Using cell arrays
function matrix = sparse2matrix(cellvec) matrix = ones(cellvec{1}) * cellvec{2}; for x=3:length(cellvec) matr...
7 mois il y a | 0
next prime number using While loops
THE BEST ANSWER function k = next_prime(n) k=n; while isprime(k)==false || k==n k = k+1; end end ...
10 mois il y a | 0
Write a function called valid_date that takes three positive integer scalar inputs year, month, day. If these three represent a valid date, return a logical true, otherwise false. The name of the output argument is valid.
The best answer function valid = valid_date(year,month,day) if not(isscalar(year))|| not(isscalar(month)) || not(isscalar(...
10 mois il y a | 1
Write a function called eligible that helps the admission officer of the Graduate School decide whether the applicant is eligible for admission based on GRE scores. The function takes two positive scalars called v and q as in
This is the BEST FCKN ANSWER function admit = eligible(v, q) admit = mean([v q]) >= 92 && min([v q]) > 88; end
10 mois il y a | 1
Write a function called minimax that takes M, a matrix input argument and returns mmr, a row vector containing the absolute values of the difference between the maximum and minimum valued elements in each row. As a second output argument called mmm,
function [x, y] = minimax(M) x = (max(M,[],2) - min(M,[],2))'; y = max(M,[], "all")- min(M,[], "all"); end
10 mois il y a | 0