The U.S. military is expected to spend more than $1 billion on software-defined radio (SDR) technology over the next few years to ensure better communication and interoperability among troops. To meet the demand, defense contractors are exploring improved design approaches for rapidly developing multimode, multiband, and multifunctional wireless devices that can be reconfigured with software updates.
Long at the forefront of SDR technology, BAE Systems has traditionally used a design flow that relied on hand-coding FPGAs in VHDL®. Recently, however, BAE Systems saw an opportunity to evaluate this approach against Model-Based Design using MathWorks and Xilinx® tools. Running two SDR waveform development efforts in parallel, they found that Simulink® and Xilinx System Generator dramatically reduced development time.
“Using Simulink, we completed all simulation and debugging in the model, where it is easier and faster to do, before automatically generating code with Xilinx System Generator,” explains Dr. David Haessig, senior member of technical staff at BAE Systems. “As a result, we demonstrated more than a 10-to-1 reduction in the time to develop the signal processing chain of a software-defined radio. This really illustrates the potential for improving development production in SDR applications.”