La traduction de cette page n'est pas à jour. Cliquez ici pour voir la dernière version en anglais.
Traitement audio
Appliquez le Deep Learning à des applications de traitement audio et de la parole en utilisant Deep Learning Toolbox™ avec Audio Toolbox™. Pour des applications de traitement du signal, veuillez consulter Traitement du signal. Pour des applications de télécommunications, veuillez consulter Télécommunications.
Applications
| Signal Labeler | Label signal attributes, regions, and points of interest | 
Fonctions
Blocs
Rubriques
- Deep Learning for Audio Applications (Audio Toolbox)Learn common tools and workflows to apply deep learning to audio applications. 
- Classify Sound Using Deep Learning (Audio Toolbox)Train, validate, and test a simple long short-term memory (LSTM) to classify sounds. 
- Adapt Pretrained Audio Network for New Data Using Deep Network DesignerThis example shows how to interactively adapt a pretrained network to classify new audio signals using Deep Network Designer. 
- Audio Transfer Learning Using Experiment ManagerConfigure an experiment that compares the performance of multiple pretrained networks applied to a speech command recognition task using transfer learning. 
- Compare Speaker Separation ModelsCompare the performance, size, and speed of multiple deep learning speaker separation models. 
- Speaker Identification Using Custom SincNet Layer and Deep LearningPerform speech recognition using a custom deep learning layer that implements a mel-scale filter bank. 
- Dereverberate Speech Using Deep Learning NetworksTrain a deep learning model that removes reverberation from speech. 
- Sequential Feature Selection for Audio FeaturesThis example shows a typical workflow for feature selection applied to the task of spoken digit recognition. 
- Train Spoken Digit Recognition Network Using Out-of-Memory Audio DataThis example trains a spoken digit recognition network on out-of-memory audio data using a transformed datastore. 
- Train Spoken Digit Recognition Network Using Out-of-Memory FeaturesThis example trains a spoken digit recognition network on out-of-memory auditory spectrograms using a transformed datastore. 
- Investigate Audio Classifications Using Deep Learning Interpretability TechniquesThis example shows how to use interpretability techniques to investigate the predictions of a deep neural network trained to classify audio data. 
- Accelerate Audio Deep Learning Using GPU-Based Feature ExtractionLeverage GPUs for feature extraction to decrease the time required to train an audio deep learning model. 
- AI for Speech Command Recognition (Audio Toolbox)
 Build, train, compress, and deploy a deep learning model for speech command recognition. - ÉTAPE 1: Train Deep Learning Network for Speech Command Recognition (Audio Toolbox)
- ÉTAPE 2: Prune and Quantize Speech Command Recognition Network (Audio Toolbox)
- ÉTAPE 3: Apply Speech Command Recognition Network in Simulink (Audio Toolbox)
- ÉTAPE 4: Apply Speech Command Recognition Network in Smart Speaker Simulink Model (Audio Toolbox)
- ÉTAPE 5: Deploy Smart Speaker Model on Raspberry Pi (Audio Toolbox)
 



















