Prétraiter les données pour les réseaux neuronaux profonds
Le prétraitement des données, pour s’assurer qu’elles sont dans un format acceptable par le réseau, est une première étape courante des workflows de Deep Learning. Par exemple, vous pouvez redimensionner l’image en entrée pour correspondre à la taille de la couche d’entrée pour les images. Vous pouvez également prétraiter des données pour améliorer les caractéristiques souhaitées ou réduire les artefacts qui peuvent biaiser le réseau. Par exemple, vous pouvez normaliser ou supprimer le bruit des données d’entrée.
Vous pouvez prétraiter l'image en entrée avec des opérations comme le redimensionnement en utilisant des datastores et des fonctions disponibles dans MATLAB® et Deep Learning Toolbox™. D’autres toolboxes MATLAB proposent des fonctions, des datastores et des applications de labélisation, de traitement et d’augmentation de données de Deep Learning. Utilisez des outils spécialisés d’autres toolboxes MATLAB pour traiter les données dans des domaines comme le traitement d’images, la détection d’objets, la segmentation sémantique, le traitement du signal, le traitement audio et l’analyse de texte.
Applications
Image Labeler | Label images for computer vision applications |
Video Labeler | Label video for computer vision applications |
Ground Truth Labeler | Label ground truth data for automated driving applications |
Lidar Labeler | Label ground truth data in lidar point clouds |
Signal Labeler | Label signal attributes, regions, and points of interest |
Fonctions
imageDatastore | Datastore for image data |
augmentedImageDatastore | Transformer des batchs de données pour augmenter les images |
imageDataAugmenter | Configure image data augmentation |
transform | Transform datastore |
combine | Combine data from multiple datastores |
augment | Appliquer des transformations aléatoires identiques à plusieurs images |
minibatchqueue | Create mini-batches for deep learning |
TransformedDatastore | Datastore to transform underlying datastore |
CombinedDatastore | Datastore to combine data read from multiple underlying datastores |
padsequences | Pad or truncate sequence data to same length (depuis R2021a) |
Rubriques
Prétraiter des données de Deep Learning
- Data Sets for Deep Learning
Discover data sets for various deep learning tasks. - Preprocess Images for Deep Learning
Learn how to resize images for training, prediction, and classification, and how to preprocess images using data augmentation, transformations, and specialized datastores. - Preprocess Volumes for Deep Learning
Read and preprocess volumetric image and label data for 3-D deep learning. - Deep Learning in MATLAB
Discover deep learning capabilities in MATLAB using convolutional neural networks for classification and regression, including pretrained networks and transfer learning, and training on GPUs, CPUs, clusters, and clouds. - Deep Learning Tips and Tricks
Learn how to improve the accuracy of deep learning networks. - Preprocess Data for Domain-Specific Deep Learning Applications
Perform deterministic or randomized data processing for domains such as image processing, object detection, semantic segmentation, signal and audio processing, and text analytics.
Personnaliser des datastores
- Datastores for Deep Learning
Learn how to use datastores in deep learning applications. - Train Network Using Out-of-Memory Sequence Data
This example shows how to train a deep learning network on out-of-memory sequence data by transforming and combining datastores. - Classify Text Data Using Convolutional Neural Network
This example shows how to classify text data using a convolutional neural network. - Optimize Datastores for Deep Learning Performance
Explore methods for speeding up deep learning workflows that use datastores. - Develop Custom Mini-Batch Datastore
Create a fully customized mini-batch datastore that contains training and test data sets for network training, prediction, and classification. - Train Network Using Custom Mini-Batch Datastore for Sequence Data
This example shows how to train a deep learning network on out-of-memory sequence data using a custom mini-batch datastore.
Étiqueter des données d’apprentissage de vérité-terrain
- Choose an App to Label Ground Truth Data
Decide which app to use to label ground truth data: Image Labeler, Video Labeler, Ground Truth Labeler, Lidar Labeler, Signal Labeler, or Medical Image Labeler. - Get Started with Ground Truth Labeling (Automated Driving Toolbox)
Interactively label multiple lidar and video signals simultaneously. - Custom Labeling Functions (Signal Processing Toolbox)
Create and manage custom labeling functions. - Label Spoken Words in Audio Signals (Signal Processing Toolbox)
Use Signal Labeler to label spoken words in an audio signal. - Label Pixels for Semantic Segmentation (Computer Vision Toolbox)
Label pixels for training a semantic segmentation network by using a labeling app.