estimate
Fit conditional variance model to data
Syntax
Description
returns the fully specified, estimated conditional variance model
EstMdl
= estimate(Mdl
,y
)EstMdl
. This model stores the estimated parameter values
resulting from fitting the partially specified conditional variance model
Mdl
to the observed univariate time series
y
by using maximum likelihood.
EstMdl
and Mdl
are the same model
type and have the same structure (see garch
, egarch
, and gjr
).
fits the partially specified conditional variance model EstMdl
= estimate(Mdl
,Tbl1
)Mdl
to response variable in the input table or timetable Tbl1
,
which contains time series data, and returns the fully specified, estimated
conditional variance model EstMdl
.
estimate
selects the response variable named in
Mdl.SeriesName
or the sole variable in
Tbl1
. To select a different response variable in
Tbl1
to fit the model to, use the
ResponseVariable
name-value argument. (since R2023a)
[___] = estimate(___,
specifies options using one or more name-value arguments in
addition to any of the input argument combinations in previous syntaxes.
Name,Value
)estimate
returns the output argument combination for the
corresponding input arguments. For example, estimate(Mdl,y,Y0=y0)
fits the
conditional variance model Mdl
to the vector of response data
y
, and specifies the vector of presample response data
y0
.
Supply all input data using the same data type. Specifically:
If you specify the numeric vector
y
, optional data sets must be numeric arrays and you must use the appropriate name-value argument. For example, to specify a presample, set theY0
name-value argument to a numeric matrix of presample data.If you specify the table or timetable
Tbl1
, optional data sets must be tables or timetables, respectively, and you must use the appropriate name-value argument. For example, to specify a presample, set thePresample
name-value argument to a table or timetable of presample data.
Examples
Input Arguments
Name-Value Arguments
Output Arguments
Tips
Algorithms
If you do not specify the presample data (
E0
andV0
, orPresample
),estimate
derives the necessary presample observations from the unconditional, or long-run, variance of the offset-adjusted response process.For all conditional variance models, presample conditional variances are the sample average of the squared disturbances of the offset-adjusted response data.
For GARCH(P,Q) and GJR(P,Q) models, presample innovations are the square root of the average squared value of the offset-adjusted response data.
For EGARCH(P,Q) models, presample innovations are
0
.
These specifications minimize initial transient effects.
If you specify a value for the
Display
name-value argument, it takes precedence over the specifications of the optimization optionsDiagnostics
andDisplay
. Otherwise,estimate
honors all selections related to the display of optimization information in the optimization options.
References
[1] Bollerslev, Tim. “Generalized Autoregressive Conditional Heteroskedasticity.” Journal of Econometrics 31 (April 1986): 307–27. https://doi.org/10.1016/0304-4076(86)90063-1.
[2] Bollerslev, Tim. “A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return.” The Review of Economics and Statistics 69 (August 1987): 542–47. https://doi.org/10.2307/1925546.
[3] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.
[4] Enders, W. Applied Econometric Time Series. Hoboken, NJ: John Wiley & Sons, 1995.
[5] Engle, Robert. F. “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation.” Econometrica 50 (July 1982): 987–1007. https://doi.org/10.2307/1912773.
[6] Glosten, L. R., R. Jagannathan, and D. E. Runkle. “On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks.” The Journal of Finance. Vol. 48, No. 5, 1993, pp. 1779–1801.
[7] Greene, W. H. Econometric Analysis. 3rd ed. Upper Saddle River, NJ: Prentice Hall, 1997.
[8] Hamilton, James D. Time Series Analysis. Princeton, NJ: Princeton University Press, 1994.
Version History
Introduced in R2012aSee Also
Objects
Functions
Topics
- Compare Conditional Variance Models Using Information Criteria
- Likelihood Ratio Test for Conditional Variance Models
- Estimate Conditional Mean and Variance Model
- Model Exchange Rate Volatility
- Maximum Likelihood Estimation for Conditional Variance Models
- Conditional Variance Model Estimation with Equality Constraints
- Presample Data for Conditional Variance Model Estimation
- Initial Values for Conditional Variance Model Estimation
- Optimization Settings for Conditional Variance Model Estimation