Documentation

acot

Inverse cotangent in radians

Description

example

Y = acot(X) returns the Inverse Cotangent (cot-1) of the elements of X in radians. The function accepts both real and complex inputs.

• For real values of X, acot(X) returns values in the interval [-π/2, π/2].

• For complex values of X, acot(X) returns complex values.

Examples

collapse all

Find the inverse cotangent of a value.

acot(2.6)
ans = 0.3672

Find the inverse cotangent of the elements of vector x. The acot function acts on x element-wise.

x = [0.5i 1+3i -2.2+i];
Y = acot(x)
Y = 1×3 complex

1.5708 - 0.5493i   0.1093 - 0.3059i  -0.3689 - 0.1506i

Plot the inverse cotangent function over the intervals $-2\pi \le x<0$ and $0.

x1 = -2*pi:pi/30:-0.1;
x2 = 0.1:pi/30:2*pi;
plot(x1,acot(x1),'b')
hold on
plot(x2,acot(x2),'b')
grid on Input Arguments

collapse all

Cotangent of angle, specified as a scalar, vector, matrix, or multidimensional array. The acot operation is element-wise when X is nonscalar.

Data Types: single | double
Complex Number Support: Yes

collapse all

Inverse Cotangent

The inverse cotangent is defined as

${\mathrm{cot}}^{-1}\left(z\right)={\mathrm{tan}}^{-1}\left(\frac{1}{z}\right).$