jacobiZeta

Jacobi zeta function

Description

example

jacobiZeta(u,m) returns the Jacobi Zeta Function of u and m. If u or m is an array, then jacobiZeta acts element-wise.

Examples

collapse all

jacobiZeta(2,1)
ans =
0.9640

Call jacobiZeta on array inputs. jacobiZeta acts element-wise when u or m is an array.

jacobiZeta([2 1 -3],[1 2 3])
ans =
0.9640 + 0.0000i   0.5890 - 0.4569i  -2.3239 + 1.9847i

Convert numeric input to symbolic form using sym, and find the Jacobi zeta function. For symbolic input where u = 0 or m = 0 or 1, jacobiZeta returns exact symbolic output.

jacobiZeta(sym(2),sym(1))
ans =
tanh(2)

Show that for other values of u or m, jacobiZeta returns an unevaluated function call.

jacobiZeta(sym(2),sym(3))
ans =
jacobiZeta(2, 3)

For symbolic variables or expressions, jacobiZeta returns the unevaluated function call.

syms x y
f = jacobiZeta(x,y)
f =
jacobiZeta(x, y)

Substitute values for the variables by using subs, and convert values to double by using double.

f = subs(f, [x y], [3 5])
f =
jacobiZeta(3, 5)
fVal = double(f)
fVal =
4.0986 - 3.0018i

Calculate f to arbitrary precision using vpa.

fVal = vpa(f)
fVal =
4.0986033838332279126523721581432 - 3.0017792319714320747021938869936i

Plot real and imaginary values of the Jacobi zeta function using fcontour. Set u on the x-axis and m on the y-axis by using the symbolic function f with the variable order (u,m). Fill plot contours by setting Fill to on.

syms f(u,m)
f(u,m) = jacobiZeta(u,m);

subplot(2,2,1)
fcontour(real(f),'Fill','on')
title('Real Values of Jacobi Zeta')
xlabel('u')
ylabel('m')

subplot(2,2,2)
fcontour(imag(f),'Fill','on')
title('Imaginary Values of Jacobi Zeta')
xlabel('u')
ylabel('m')

Input Arguments

collapse all

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

collapse all

Jacobi Zeta Function

The Jacobi zeta function jacobiZeta(u,m) is defined as

$Z\left(u,m\right)=E\left(\phi ,m\right)-\frac{E\left(m\right)}{K\left(m\right)}F\left(\phi ,m\right).$

The definitions of the terms in above equation are:

• E(φ | m) and E(m) are the incomplete and complete elliptic integrals of the second kind, respectively, implemented as ellipticE.

• K(m) is the complete elliptic integral of the first kind, implemented as ellipticK.

• F(φ | m) is the incomplete elliptic integral of the first kind, implemented as ellipticF.

• am(u, m) is the Jacobi's amplitude function, implemented as jacobiAM.

The argument u is related to φ by the relations u = F(φ | m) and am(u, m) = φ, where am(u, m) is the Jacobi's amplitude function.

References

[1] Olver, F. W. J., A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds., Chapter 22. Jacobian Elliptic Functions, NIST Digital Library of Mathematical Functions, Release 1.0.26 of 2020-03-15.