Main Content

isDone

End-of-processing status for visual SLAM object

Since R2023b

Description

done = isDone(vslam) returns a logical value indicating whether the visual SLAM object has finished processing its frames. A value of true indicates the object is in an idle state. A value of false indicates the object is processing one or more frames.

example

Examples

collapse all

Perform monocular visual simultaneous localization and mapping (vSLAM) using the data from the TUM RGB-D Benchmark. You can download the data to a temporary directory using a web browser or by running this code:

baseDownloadURL = "https://cvg.cit.tum.de/rgbd/dataset/freiburg3/rgbd_dataset_freiburg3_long_office_household.tgz"; 
dataFolder = fullfile(tempdir,"tum_rgbd_dataset",filesep); 
options = weboptions(Timeout=Inf);
tgzFileName = dataFolder+"fr3_office.tgz";
folderExists = exist(dataFolder,"dir");

% Create a folder in a temporary directory to save the downloaded file
if ~folderExists  
    mkdir(dataFolder) 
    disp("Downloading fr3_office.tgz (1.38 GB). This download can take a few minutes.") 
    websave(tgzFileName,baseDownloadURL,options); 
    
    % Extract contents of the downloaded file
    disp("Extracting fr3_office.tgz (1.38 GB) ...") 
    untar(tgzFileName,dataFolder); 
end

Create an imageDatastore object to store all the RGB images.

imageFolder = dataFolder+"rgbd_dataset_freiburg3_long_office_household/rgb/";
imds = imageDatastore(imageFolder);

Specify your camera intrinsic parameters, and use them to create a monocular visual SLAM object.

intrinsics = cameraIntrinsics([535.4 539.2],[320.1 247.6],[480 640]);
vslam = monovslam(intrinsics,TrackFeatureRange=[30,120]);

Process each image frame, and visualize the camera poses and 3-D map points. Note that the monovslam object runs several algorithm parts on separate threads, which can introduce a latency in processing of an image frame added by using the addFrame function.

for i = 1:numel(imds.Files)
    addFrame(vslam,readimage(imds,i))

    if hasNewKeyFrame(vslam)
        % Display 3-D map points and camera trajectory
        plot(vslam);
    end

    % Get current status of system
    status = checkStatus(vslam);
end 

Figure contains an axes object. The axes object with xlabel X, ylabel Y contains 12 objects of type line, text, patch, scatter. This object represents Camera trajectory.

Plot intermediate results and wait until all images are processed.

while ~isDone(vslam)
    if hasNewKeyFrame(vslam)
        plot(vslam);
    end
end

Figure contains an axes object. The axes object with xlabel X, ylabel Y contains 12 objects of type line, text, patch, scatter. This object represents Camera trajectory.

After all the images are processed, you can collect the final 3-D map points and camera poses for further analysis.

xyzPoints = mapPoints(vslam);
[camPoses,addedFramesIdx] = poses(vslam);

% Reset the system
reset(vslam)

Compare the estimated camera trajectory with the ground truth to evaluate the accuracy.

% Load ground truth
gTruthData = load("orbslamGroundTruth.mat");
gTruth     = gTruthData.gTruth;

% Evaluate tracking accuracy
mtrics = compareTrajectories(camPoses, gTruth(addedFramesIdx), AlignmentType="similarity");
disp(['Absolute RMSE for key frame location (m): ', num2str(mtrics.AbsoluteRMSE(2))]);
Absolute RMSE for key frame location (m): 0.093645
% Plot the absolute translation error at each key frame
figure
ax = plot(mtrics, "absolute-translation");
view(ax, [2.70 -49.20]); 

Figure contains an axes object. The axes object with title Absolute Translation Error, xlabel X, ylabel Y contains 2 objects of type patch, line. These objects represent Estimated Trajectory, Ground Truth Trajectory.

Input Arguments

collapse all

Visual SLAM object, specified as a monovslam object.

Version History

Introduced in R2023b