how to use fsolve function

14 vues (au cours des 30 derniers jours)
sermet
sermet le 24 Fév 2014
Modifié(e) : Matt J le 24 Fév 2014
%I have 3 nonlinear equation. I need to find unknowns I tried fsolve function but I couldn't use it properly, could anyone explain for me how can I use fsolve function?
(-4.71777*10^21)+(2.10263*(10^15)*x0)-(3.49196*(10^8)*(x0^2))+(28*x0^3)+(1.56321*(10^14)*y0)-(3.76035*(10^7)*x0*y0)-(1.16399*(10^8)*y0^2)+(28*x0*y0^2)+(1.11156*(10^15)*z0)-(2.6739*(10^8)*x0*z0)-(1.16399*(10^8)*z0^2)+(28*x0*z0^2)==0
(-7.62057*10^20)+(1.56321*(10^14)*x0)-(1.88017*(10^7)*x0^2)+(1.16012*(10^15)*y0)-(2.32797*(10^8)*x0*y0)+(28*(x0^2)*y0)-(5.64052*(10^7)*y0^2)+(28*y0^3)+(1.7955*(10^14)*z0)-(2.6739*(10^8)*y0*z0)-(1.88017*(10^7)*z0^2)+(28*y0*z0^2)==0
(-5.41882*(10^21)+(1.11156*(10^15)*x0)-(1.33695*(10^8)*x0^2)+(1.7955*(10^14)*y0)-(1.33695*(10^8)*y0^2)+(2.41161*(10^15)*z0)-(2.32797*(10^8)*x0*z0)+(28*(x0^2)*z0)-(3.76035*(10^7)*y0*z0)+(28*(y0^2)*z0)-(4.01085*(10^8)*z0^2)+(28*z0^3)==0
%x0,y0,z0 are the unknowns.
  2 commentaires
Star Strider
Star Strider le 24 Fév 2014
Post the code you used.
sermet
sermet le 24 Fév 2014
function F = myfun(x)
F = [(-4.71777*10^21)+(2.10263*(10^15)*x0)-(3.49196*(10^8)*(x0^2))+(28*x0^3)+(1.56321*(10^14)*y0)-(3.76035*(10^7)*x0*y0)-(1.16399*(10^8)*y0^2)+(28*x0*y0^2)+(1.11156*(10^15)*z0)-(2.6739*(10^8)*x0*z0)-(1.16399*(10^8)*z0^2)+(28*x0*z0^2;(-7.62057*10^20)+(1.56321*(10^14)*x0)-(1.88017*(10^7)*x0^2)+(1.16012*(10^15)*y0)-(2.32797*(10^8)*x0*y0)+(28*(x0^2)*y0)-(5.64052*(10^7)*y0^2)+(28*y0^3)+(1.7955*(10^14)*z0)-(2.6739*(10^8)*y0*z0)-(1.88017*(10^7)*z0^2)+(28*y0*z0^2);(-5.41882*(10^21)+(1.11156*(10^15)*x0)-(1.33695*(10^8)*x0^2)+(1.7955*(10^14)*y0)-(1.33695*(10^8)*y0^2)+(2.41161*(10^15)*z0)-(2.32797*(10^8)*x0*z0)+(28*(x0^2)*z0)-(3.76035*(10^7)*y0*z0)+(28*(y0^2)*z0)-(4.01085*(10^8)*z0^2)+(28*z0^3)]
x0 = [-5; -5]; y0=[1 1] z0=[1 1]
options=optimset('Display','iter');
[x0,y0,z0,fval] = fsolve(@myfun,x0,y0,z0,options) % Call solver

Connectez-vous pour commenter.

Réponse acceptée

Walter Roberson
Walter Roberson le 24 Fév 2014
eqn1 = @(x0, y0, z0) (-4.71777*10^21)+(2.10263*(10^15)*x0)-(3.49196*(10^8)*(x0^2))+(28*x0^3)+(1.56321*(10^14)*y0)-(3.76035*(10^7)*x0*y0)-(1.16399*(10^8)*y0^2)+(28*x0*y0^2)+(1.11156*(10^15)*z0)-(2.6739*(10^8)*x0*z0)-(1.16399*(10^8)*z0^2)+(28*x0*z0^2);
eqn2 = @(x0, y0, z0) (-7.62057*10^20)+(1.56321*(10^14)*x0)-(1.88017*(10^7)*x0^2)+(1.16012*(10^15)*y0)-(2.32797*(10^8)*x0*y0)+(28*(x0^2)*y0)-(5.64052*(10^7)*y0^2)+(28*y0^3)+(1.7955*(10^14)*z0)-(2.6739*(10^8)*y0*z0)-(1.88017*(10^7)*z0^2)+(28*y0*z0^2);
eqn3 = @(x0, y0, z0) (-5.41882*(10^21)+(1.11156*(10^15)*x0)-(1.33695*(10^8)*x0^2)+(1.7955*(10^14)*y0)-(1.33695*(10^8)*y0^2)+(2.41161*(10^15)*z0)-(2.32797*(10^8)*x0*z0)+(28*(x0^2)*z0)-(3.76035*(10^7)*y0*z0)+(28*(y0^2)*z0)-(4.01085*(10^8)*z0^2)+(28*z0^3);
fun = @(x) [eqn1(x(1), x(2), x(3)); eqn2(x(1), x(2), x(3)); eqn3(x(1), x(2), x(3))];
now you can fsolve(fun, x0)

Plus de réponses (1)

Matt J
Matt J le 24 Fév 2014
Modifié(e) : Matt J le 24 Fév 2014
Your initial guesses x0, y0, z0 should not be passed in separate scalar arguments to myfun (notice your myfun also accepts only a single input argument vector, as it should!). Also, fsolve will not return the solution vector components as separate scalar arguments.
  2 commentaires
sermet
sermet le 24 Fév 2014
could you write the codes I need please
Matt J
Matt J le 24 Fév 2014
Modifié(e) : Matt J le 24 Fév 2014
[solution,fval] = fsolve(@myfun,[x0,y0,z0],options) % Call solver

Connectez-vous pour commenter.

Catégories

En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by