How to calculate a numerical approximate derivative vector of a function?
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Jabir Al Fatah
le 31 Mai 2014
Commenté : Star Strider
le 31 Mai 2014
I have a given formmula: Yprimenum(i) = (Y(i+1) – Y(i)) / ∆X, where ∆X is the X step length, or equivallently X(i) – X(i-1). And I also have two given functions: X= [0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 ] Y= [5 6 7 7.5 7.5 7.5 6.5 2.5 -5 -6 -6]
Now my task is to plot this function, Y, and calculate and plot the corresponding Yprimenum in the same graph. This is what I tried:
x= [0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 ]
y= [5 6 7 7.5 7.5 7.5 6.5 2.5 -5 -6 -6]
yprime=2.*x;
Yprimenum=zeros(1, length(x)-1);
for i= 1:length(x)-1;
Yprimenum(i)=(y(i+1)-y(i))./(x(i+1)-x(i));
end
figure;
hold on;
plot(x,y);
plot(x,yprime);
plot(x,Yprimenum(i));
hold off;
shg;
0 commentaires
Réponse acceptée
Star Strider
le 31 Mai 2014
Your derivative, Yprimenum, is by definition one element shorter than x, so you have to eliminate the last entry of x to plot it:
x= [0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 ]
y= [5 6 7 7.5 7.5 7.5 6.5 2.5 -5 -6 -6]
yprime=2.*x;
Yprimenum=zeros(1, length(x)-1);
for i= 1:length(x)-1;
Yprimenum(i)=(y(i+1)-y(i))./(x(i+1)-x(i));
end
figure;
hold on;
plot(x,y,'-b');
plot(x,yprime,'g');
plot(x(1:end-1),Yprimenum,'r');
hold off;
shg;
This is unavoidable with the method you used (and that the diff function uses) but there are ways to deal with it. This is one such.
2 commentaires
Plus de réponses (1)
Andrei Bobrov
le 31 Mai 2014
Modifié(e) : Andrei Bobrov
le 31 Mai 2014
x= [0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 ]
y= [5 6 7 7.5 7.5 7.5 6.5 2.5 -5 -6 -6]
Yprimenum = diff(y)./diff(x);
other variant
Yprimenum = gradient(y,x);
0 commentaires
Voir également
Catégories
En savoir plus sur Discrete Data Plots dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!