Big integer and Precision

50 vues (au cours des 30 derniers jours)
saima
saima le 12 Juil 2014
Hi,
I am trying to work on some problems which deal with really large integers (much larger than intmax('uint64')). How do I deal with such integers in MATLAB? I got some stuffs online based on 'vpa'. Is there any alternative to symbolic toolbox and vpa? Using an easy example, say I am trying to calculate the value of 2^2317. How is it possible to do it?
And how do I increase the precision of calculation? Say, I am trying to calculate sqrt(3) upto 15 digits precision. How can I do it?
Thanks :-)
  3 commentaires
Image Analyst
Image Analyst le 12 Juil 2014
Modifié(e) : Image Analyst le 12 Juil 2014
Is there some link that gives the answer for how many digits you can expect for single or double precision? [edit] http://www.mathworks.com/help/matlab/matlab_prog/floating-point-numbers.html seems to indicate that the number of places depends on the number you're considering, but it's accurate through about 14 decimal places (7.1e-15 so the 15th place can be inaccurate by as much as 7) for doubles and through 6 places (+/- 4.7684e-07, the 7th place varies by around +/-4) for singles.
Star Strider
Star Strider le 12 Juil 2014
Modifié(e) : Star Strider le 12 Juil 2014
eps:
  • eps(X) = 2^(E-23) if isa(X,'single')
  • eps(X) = 2^(E-52) if isa(X,'double')
Also: flintmax.

Connectez-vous pour commenter.

Réponses (3)

Star Strider
Star Strider le 12 Juil 2014
Modifié(e) : Star Strider le 12 Juil 2014
The vpa function in the Symbolic Math Toolbox is probably your only option. You can adjust the precision with the digits function.
From the documentation:
  • digits lets you specify any number of significant decimal digits from 1 to 2^29 + 1. ’
  1 commentaire
Image Analyst
Image Analyst le 12 Juil 2014
Wow, 536,870,913 digits of precision. I never would have guessed that you could get that much precision. And I thought 20 or 30 would have been a lot.

Connectez-vous pour commenter.


James Tursa
James Tursa le 12 Juil 2014
Modifié(e) : James Tursa le 12 Juil 2014
In addition to the Symbolic Toolbox, for extended precision integer and floating point arithmetic, you can use these FEX submissions by John D'Errico:

Christopher Creutzig
Christopher Creutzig le 1 Sep 2014
Modifié(e) : Christopher Creutzig le 1 Sep 2014
You can compute with exact integers and rationals using the symbolic toolbox, just make sure they are not cut off by computing in doubles first:
>> sym(2)^2317
ans =
30654903508108357077958654144825937585978808922337901521692741170911447076693116235513237095579066485773937279334784139954181575840986269850991750398202331213943274278112396793424683275528507127617356737974156212114985333650793917021532655353073330339869206521452698460733186617040160262848093715277704279290680230304150547684590960276420040187406068172642162633162861058913834479146788713758308941909711983231722076836272997428595743463045969399361824711110350992834115834375631290260030543671026084690659491964528746134305444576187523233231429766154483330868291973263704666586462246580637588991629908758131771642269031718471782924220000298094429698919484347691856871276393621193756312248959107072
>> (sqrt(sym(2))+1/sym(7))^23
ans =
(2^(1/2) + 1/7)^23
>> expand((sqrt(sym(2))+1/sym(7))^23)
ans =
(36964502873561444765593*2^(1/2))/3909821048582988049 + 359084438788642488468527/27368747340080916343

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by