How to solve ODE's and find m(t) using matlab? Urgent!!
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Shubham Maurya
le 25 Juil 2014
Commenté : Star Strider
le 26 Juil 2014
Here is the given ODE for which I need a solution:
Please help me on how to do this!!!
2 commentaires
Réponse acceptée
Star Strider
le 25 Juil 2014
Modifié(e) : Star Strider
le 25 Juil 2014
Use ode45. It’s five lines of code, including the plot:
mdot = @(t,m) sqrt(2E+5.*((1+(0.4-m)./0.5).^-1.4 - 1));
[t,m] = ode45(mdot, [0 1], 0.001);
figure(1)
semilogy(t, real(m), '-b', t, imag(m), '-g')
grid
3 commentaires
Star Strider
le 26 Juil 2014
Since I did’t have other information, I chose m(0)=0.001 and ran it from [0 1] in time. With your m(0)=0.4 and time span [0 0.5] the call to ode45 is:
[t,m] = ode45(mdot, [0 0.5], 0.4);
and the entire code is now:
mdot = @(t,m) sqrt(2E+5.*((1+(0.4-m)./0.5).^-1.4 - 1));
[t,m] = ode45(mdot, [0 0.5], 0.4);
figure(1)
plot(t, m, '-*b')
grid
axis([xlim 0 0.5])
With the square root, I’m somewhat surprised that there aren’t two solutions, for instance ±0.4 but the routine produces only one. Yours is a nonlinear equation, and the Symbolic Math Toolbox cannot solve it. (I have it, and I tried that to see what it would do. There is no analytic solution.)
The output doesn’t change from the initial conditions, and is uniformly 0.4 from 0 to 0.5.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!