How to integrate linear system of vectorial equations?
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Anshuman Pal
le 20 Août 2021
Commenté : Star Strider
le 22 Août 2021
Hello,
I have the following system of vectorial equations that describe a curve in space r, its tangent vector t and its normal $n$, parametrised by the arc length s:
Suppose I have the function given as a vector of values, as well as initial values of r, t and n. Then is there some simple way (or package) for numerically integrating this system of vectorial equations?
Thank you very much!
1 commentaire
Réponse acceptée
Star Strider
le 20 Août 2021
syms kappa n(s) r(s) s t(s) r0 t0 n0 Y
Eqn = [diff(r) == t; diff(t) == -r + kappa*n; diff(n) == -kappa*t];
rtn = dsolve(Eqn, r(0)==r0, t(0)==t0, n(0)==n0)
t = simplify(rtn.t, 500)
r = simplify(rtn.r, 500)
n = simplify(rtn.n, 500)
Alternatively:
[VF,Subs] = odeToVectorField(Eqn)
rtnfcn = matlabFunction(VF, 'Vars',{s,Y,kappa})
Use ‘rtnfcn’ with the approopriate numeric ODE solver (for example 0de45, ode15s) depending on the magnitude of κ.
For example:
sspan = linspace(0,10); % Vector Of 's' Values
initconds = rand(3,1); % Initial Conditions
[s,rtn] = ode15s(@(s,rtn,kappa), sspan, initconds); % Integrate
figure
plot(s, rtn)
grid
.
4 commentaires
Star Strider
le 22 Août 2021
As always, my pleasure!
‘Is there a typo in `ode15s(@(s,rtn,kappa), sspan, initconds)`? ’
There is. It should be:
[s,rtn] = ode15s(@(s,rtn) rtnfcn(s,rtn,kappa), sspan, initconds); % Integrate
‘Can I use `rtnfcn` with a boundary-value solver like `bvp4c`?’
Probably. One addition would be to create ‘kappa’ as an anonymous function, for example with ‘s’ as the independent variable and ‘kapa’ as the dependent variable:
kapamtx = [s(:) kapa(:)];
kappa = @(s) interp1(kapamtx(:,1), kapamtx(:,2), s);
It would be necessary either to keep ‘s’ within the limits of ‘kapamtx(:,1)’ in order to avoid either extrapolating or returning NaN values for ‘s’ outside that range.
.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!