How can I find the Y value on an X–Y plot that corresponds to the tangent of the flattest part of a curve?

4 vues (au cours des 30 derniers jours)
I have plots like the one attached. At Y >0, the curve plateaus (flattens) before it increases sharply. I need to find the Y value at which the plateau/flat area is flattest.
Does anyone know how to do this? I can't figure out a solution that gets the part of the curve that I want. Thank you.
  8 commentaires
dpb
dpb le 23 Août 2021
@Srh Fwl -- You've still not precisely answered the Q? of just what it is you're after here...is it the end of the "real" initial floor or an inflection point later that is the subject?
Adam Danz
Adam Danz le 23 Août 2021
@Srh Fwl, looks like Star Strider demonstrated that idea in a comment below the answer. Notice that the dip in the red curve is at the location I think you're refering to. If you need additional specific help, you may want to clarify the foggy areas pointed out by dpb.

Connectez-vous pour commenter.

Réponse acceptée

Star Strider
Star Strider le 22 Août 2021
T1 = readtable('https://www.mathworks.com/matlabcentral/answers/uploaded_files/718334/exampleData.txt')
T1 = 101×2 table
Var1 Var2 ____ ____ NaN 0 0.15 0 0.25 0 0.35 0 0.45 0 0.55 0 0.65 0 0.75 0 0.85 0 0.95 0 1.05 0 1.15 0 1.25 0 1.35 0 1.45 0 1.55 0
T1 = rmmissing(T1); % Remove 'NaN' Values
h = mean(diff(T1.Var1))
h = 0.1000
d2d1 = gradient(T1.Var2, h); % Numerical Derivative
flatidx = find(abs(d2d1)<1E-14); % Zero Slope (With Tolerance)
yflat = T1.Var2(flatidx)
yflat = 19×1
0 0 0 0 0 0 0 0 0 0
figure
plot(T1.Var1, T1.Var2)
hold on
plot(T1.Var1(flatidx), T1.Var2(flatidx), 'vr')
hold off
grid
legend('Data','Flat Section', 'Location','best')
This should also work with other data sets, although obviously I cannot test it with them.
.
  2 commentaires
Srh Fwl
Srh Fwl le 23 Août 2021
@Star Strider, thank you very much. I apologize because my question wasn't clear enough. I need the y value of the flattest area at y >0. The curves start off with y close to 0 and it's where they again flatten (in my example, at y between 3 and 5) that I need the y value. Apologies.
Star Strider
Star Strider le 23 Août 2021
Set the conditions in the find call to match what you want to define.
T1 = readtable('https://www.mathworks.com/matlabcentral/answers/uploaded_files/718334/exampleData.txt')
T1 = 101×2 table
Var1 Var2 ____ ____ NaN 0 0.15 0 0.25 0 0.35 0 0.45 0 0.55 0 0.65 0 0.75 0 0.85 0 0.95 0 1.05 0 1.15 0 1.25 0 1.35 0 1.45 0 1.55 0
T1 = rmmissing(T1); % Remove 'NaN' Values
h = mean(diff(T1.Var1))
h = 0.1000
d2d1 = gradient(T1.Var2, h); % Numerical Derivative
flatidx = find((abs(d2d1)<1.0) & (T1.Var2 > 0)); % Define Slope Criteria (With Tolerance)
yflat = T1.Var2(flatidx)
yflat = 6×1
0.0000 0.0004 0.0030 0.0123 0.0395 0.0982
figure
plot(T1.Var1, T1.Var2)
hold on
plot(T1.Var1, d2d1)
plot(T1.Var1(flatidx), T1.Var2(flatidx), '.r')
hold off
grid
legend('Data', 'Numeircal Derivative', 'Flat Section', 'Location','best')
Make appropriate changes to get the result you want.
.

Connectez-vous pour commenter.

Plus de réponses (1)

Turlough Hughes
Turlough Hughes le 23 Août 2021
Modifié(e) : Turlough Hughes le 23 Août 2021
How robust this is depends on the consistency of that initial pattern, i.e. the initial acceleration followed by a period of deceleration (starting to plateau) until the "flattest" point where it then begins to accelerate again. This point between the initial deceleration and acceleration is also known as an inflection point, as mentioned by @dpb. It's also the point where where y is closest to being parallel to the x-axis in the region (where it is initially plateauing).
To find the inflection point we find the location where . I understand you want the second one as follows:
T = readmatrix('https://www.mathworks.com/matlabcentral/answers/uploaded_files/718334/exampleData.txt');
x = T(:,1);
y = T(:,2);
subplot(2,1,1)
plot(x,y,'LineWidth',3)
ylabel('f(x)'), xlabel('x')
set(gca,'fontSize',12)
subplot(2,1,2)
ypp = gradient(gradient(y,x),x); % second derivative of y w.r.t. x
plot(x,ypp,'LineWidth',3);
ylabel('f''''(x)')
xlabel('x')
set(gca,'fontSize',12)
idx = ypp > 0;
hold on, plot(x(idx),ypp(idx),'or','LineWidth',2)
iFlat = find(diff(idx)==1)+1; % y is most linear when it's second derivate, ypp, is equal to 0
iInflect = iFlat(2); % the second time ypp becomes > 0 approximates the second inflection point.
plot(x(iInflect),ypp(iInflect),'sk','MarkerSize',10,'LineWidth',2)
subplot(2,1,1)
hold on, plot(x(iInflect),y(iInflect),'sk','MarkerSize',10,'LineWidth',2)
x(1:iInflect-1) = [];
y(1:iInflect-1) = [];
plot(x,y,'--r','LineWidth',2)
legend('Original Dataset','Second Inflection Point','New Dataset','Location','NorthWest')
  1 commentaire
Srh Fwl
Srh Fwl le 24 Août 2021
Thank you very much, Turlough. Your solution does work but unfortunately I can only accept one answer and I put the first answerer through more inconvenience so chose that one. I appreciate your help.

Connectez-vous pour commenter.

Catégories

En savoir plus sur Data Preprocessing dans Help Center et File Exchange

Produits


Version

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by