exponential curve fit coefficients

19 vues (au cours des 30 derniers jours)
Jamie Williamson
Jamie Williamson le 8 Sep 2021
Is there a way to calculate exponential curve fit coefficients without using the curvefit toolbox??

Réponses (2)

Star Strider
Star Strider le 8 Sep 2021
Modifié(e) : Star Strider le 8 Sep 2021
Linearising it by log-transforming the data is not appropriate, because that distorts the errors, making them multiplicative rather than additive.
It is straightforward to do a nonlinear parameter estimation using fminsearch, which is a core-MATLAB function, requiring no toolboxes.
EDIT — (8 Sep 2021 at 15:30)
To illustrate —
x = linspace(0, 5, 25);
y = x.^2 + randn(size(x));
y = abs(y);
objfcn = @(b,x) b(1).*exp(b(2).*x); % Objective Function
B0 = rand(3,1);
[B1,Fval] = fminsearch(@(b) norm(y - objfcn(b,x)), B0) % Nonlinear Iterative Solution
B1 = 3×1
1.4102 0.5850 -1.0206
Fval = 7.3191
Fit1 = objfcn(B1,x);
B2 = polyfit(x, log(y), 1)
B2 = 1×2
0.9478 -0.9879
Fit2 = polyval(B2, x);
Fit2 = exp(Fit2);
plot(x, y, '.b')
hold on
plot(x, Fit1, '-r')
hold off
title('Nonlinear Fit')
plot(x, y, '.b')
hold on
plot(x, Fit2, '-r')
hold off
title('Linearised Fit')
  1 commentaire
Ravi Narasimhan
Ravi Narasimhan le 8 Sep 2021
Very interesting. I didn't know this was available in core Matlab. I thought (probably incorrectly) that the OP was looking for a quick and dirty solution where the linearization wasn't a big concern.

Connectez-vous pour commenter.

Ravi Narasimhan
Ravi Narasimhan le 8 Sep 2021
Modifié(e) : Ravi Narasimhan le 8 Sep 2021


En savoir plus sur Get Started with Curve Fitting Toolbox dans Help Center et File Exchange




Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by