curve fit a custom polynomial
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Randy Chen
le 26 Oct 2021
Commenté : Star Strider
le 27 Oct 2021
I have the following 2nd order polynomial in the r-z coordinates:
Right now I have four sets of coordinats (r,z), how should I do a curve fit such that I can get an expression for Z in terms of r?
z = [-6.41 -12.4 2.143 102];
r = [13.58 15.7636 12.96 46.6];
0 commentaires
Réponse acceptée
Star Strider
le 27 Oct 2021
One approach —
syms A B C D r z
sf = A*r^2 + B*z + C*r + D == 0
sfiso = isolate(sf, z)
zfcn = matlabFunction(rhs(sfiso), 'Vars',{[A B C D],r})
z = [-6.41 -12.4 2.143 102];
r = [13.58 15.7636 12.96 46.6];
B0 = rand(1,4);
nlm = fitnlm(r, z, zfcn, B0)
Bv = nlm.Coefficients.Estimate;
pv = nlm.Coefficients.pValue;
Out = table({'A';'B';'C';'D'},Bv,pv, 'VariableNames',{'Parameter','Value','p-Value'})
rv = linspace(min(r), max(r));
zv = predict(nlm, rv(:));
figure
plot(r, z, 'pg')
hold on
plot(rv, zv, '-r')
hold off
grid
xlabel('r')
ylabel('z')
legend('Data','Model Fit', 'Location','best')
The Warning was thrown because the number of parameters are not less than the number of data pairs.
Experiment to get different results.
.
2 commentaires
Star Strider
le 27 Oct 2021
As always, my pleasure!
syms A B C D r z
sf = A*r^2 + B*z + C*r + D == 0
sfiso = solve(sf, z)
zfcn = matlabFunction(sfiso, 'Vars',{[A B C D],r})
z = [-6.41 -12.4 2.143 102];
r = [13.58 15.7636 12.96 46.6];
B0 = rand(1,4);
nlm = fitnlm(r, z, zfcn, B0)
Bv = nlm.Coefficients.Estimate;
pv = nlm.Coefficients.pValue;
Out = table({'A';'B';'C';'D'},Bv,pv, 'VariableNames',{'Parameter','Value','p-Value'})
rv = linspace(min(r), max(r));
zv = predict(nlm, rv(:));
figure
plot(r, z, 'pg')
hold on
plot(rv, zv, '-r')
hold off
grid
xlabel('r')
ylabel('z')
legend('Data','Model Fit', 'Location','best')
I like isolate because of the output format, and some of its other characteristics.
.
Plus de réponses (1)
Rik
le 27 Oct 2021
You have two options: rewrite your equation to be a pure quadratic and use polyfit, or use a function like fit or fminsearch on this shape.
If you have trouble implementing either of these two, feel free to comment with what you tried.
2 commentaires
Rik
le 27 Oct 2021
Polyfit will fit a pure polynomial of the form
f(x)=p(1)*x^n +p(2)*x^(n-1) ... +p(n)*x +p(n+1)
That means you can determine the values of -A/B, -C/B, and -D/B with polyfit.
As you may conclude from this: there is no unique solution for your setup, unless you have other restrictions to the values you haven't told yet.
z = [-6.41 -12.4 2.143 102];
r = [13.58 15.7636 12.96 46.6];
p=polyfit(r,z,2)
Voir également
Catégories
En savoir plus sur Linear and Nonlinear Regression dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!