how to get tf answer for this problem?
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
arian hoseini
le 12 Jan 2022
Commenté : Star Strider
le 12 Jan 2022
a=[40]
b=[0.05 1]
c=[1]
d=[0.5 1]
e=[0.8]
f=[1 1]
g=[0.1]
h=[0.04 1]
T1=tf(a,b)
T2=tf(c,d)
T3=tf(e,f)
T4=tf(g,h)
A=(T1*T2*T3)
B=(T1*T2*T4)
C=1+B+A
A/C
i want A to be like this 32/((1+.05s)(1+0.5s)(1+s)) is this possible
0 commentaires
Réponse acceptée
Star Strider
le 12 Jan 2022
Almost.
a=[40];
b=[0.05 1];
c=[1];
d=[0.5 1];
e=[0.8];
f=[1 1];
g=[0.1];
h=[0.04 1];
T1=tf(a,b);
T2=tf(c,d);
T3=tf(e,f);
T4=tf(g,h);
A=(T1*T2*T3)
Azpk = zpk(A)
B=(T1*T2*T4)
Bzpk = zpk(B)
C=1+B+A
Czpk = zpk(C)
AC = A/C
ACzpk = zpk(AC)
Amr = minreal(A)
Amrzpk = zpk(Amr)
Bmr = minreal(B)
Bmrzpk = zpk(Bmr)
Cmr = minreal(C)
Cmrzpk = zpk(Cmr)
ACmr = minreal(AC)
ACmrzpk = zpk(ACmr)
.
2 commentaires
Star Strider
le 12 Jan 2022
My pleasure!
The form you need is not an option in any of the representations I looked through. The zpk representation is as close as it is possible to get. Dividing the transfer function by (s+20)^2 changes nothing about it.
If you absolutely must have that representation, you will need to write it yourself, or possibly use the Symbolic Math Toolbox. Special representations such as that are simply not possible in the Control System Toolbox.
s = tf('s');
a=[40];
b=[0.05 1];
c=[1];
d=[0.5 1];
e=[0.8];
f=[1 1];
g=[0.1];
h=[0.04 1];
T1=tf(a,b);
T2=tf(c,d);
T3=tf(e,f);
T4=tf(g,h);
A=(T1*T2*T3);
% Azpk = zpk(A);
B=(T1*T2*T4);
% Bzpk = zpk(B)
C=1+B+A;
% Czpk = zpk(C)
AC = A/C;
% ACzpk = zpk(AC)
% Amr = minreal(A)
% Amrzpk = zpk(Amr)
% Bmr = minreal(B)
% Bmrzpk = zpk(Bmr)
% Cmr = minreal(C)
% Cmrzpk = zpk(Cmr)
ACmr = minreal(AC);
ACmrzpk = zpk(ACmr)
.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Startup and Shutdown dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!