energy of a signal in t and f domain
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
The energy of a signal is expected to be the same in t and f domain.
n = 1e4;
dx = 0.25;
x = rand(n,1) -0.5;
ex = sum(x.^2) *dx; % energy in t domain
y = fft(x);
fs = 1/dx;
df = fs/n;
ya = abs(y);
ey = sum(ya.^2) *df; % energy in f domain
but from the code, ey/ex=16, exactly the squared fs.
what's the problem?
0 commentaires
Réponse acceptée
Star Strider
le 3 Déc 2014
You need to normalise the fft by dividing it by the length of the signal:
y = fft(x)/length(x);
See the documentation for fft for details.
Plus de réponses (2)
Paul
le 10 Nov 2024
For a finite duration signal x[n] of length N, and its Discrete Fourier Transform (DFT) X[k] (as computed by fft), the energy relationship is given by Parseval's Theorem: sum(abs(x[n]^2)) = sum(abs(X[k])^2))/N
n = 1e4;
dx = 0.25;
x = rand(n,1) -0.5;
%ex = sum(x.^2) *dx; % energy in t domain
y = fft(x);
fs = 1/dx;
%df = fs/n;
%ya = abs(y);
%ey = sum(ya.^2) *df; % energy in f domain
Parseval's Theorem:
[sum(abs(x).^2) sum(abs(y).^2)/n]
If the first term is multiplied by dx, then the second must also be multiplied by dx = 1/fs
[sum(abs(x).^2)*dx sum(abs(y).^2)/n/fs]
0 commentaires
Voir également
Catégories
En savoir plus sur Spectral Measurements dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!