Linear regression : How to take into account the quadratic term only and not the linear term ?

4 vues (au cours des 30 derniers jours)
Hello everyone,
I am currently working on a linear regression using the fitlm tool. I collect my datas from a table name "newT2" that has 3 columns.
Here is my code :
modelaction = 'Var1 ~ Var2 + Var3^2';
mdlaction = fitlm(newT2, modelaction);
The problem is that the regression is done according this equation : 'Var1 ~ Var2 + Var3+ Var3^2'. But it's not what I asked, I don't want the linear term Var3.
In fact, if I run with the equation 'Var1 ~ Var2 + Var3^3', the regression is done according : 'Var1 ~ Var2 + Var3+ Var3^2 + Var3^3' and so on.
Thanks for your help !
  1 commentaire
Torsten
Torsten le 22 Avr 2022
Modifié(e) : Torsten le 22 Avr 2022
If nothing helps, square Var3 in newT2 and use a linear model:
modelaction = 'Var1 ~ Var2 + Var3_squared';

Connectez-vous pour commenter.

Réponses (1)

Star Strider
Star Strider le 22 Avr 2022
Suppress the intercept term and the linear ‘Var3’ by negating them —
newT2 = array2table(rand(7,3)) % Create Data Table
newT2 = 7×3 table
Var1 Var2 Var3 _______ _______ ________ 0.9339 0.56678 0.7716 0.86767 0.18461 0.039493 0.95488 0.51097 0.95676 0.53864 0.8246 0.86486 0.23089 0.41095 0.76704 0.93338 0.12252 0.19638 0.91871 0.38145 0.6025
modelaction = 'Var1 ~ - 1 + Var2 - Var3 + Var3^2'; % Specify Model
mdlaction = fitlm(newT2, modelaction)
mdlaction =
Linear regression model: Var1 ~ Var2 + Var3^2 Estimated Coefficients: Estimate SE tStat pValue ________ ______ ________ _______ Var2 1.7668 1.4213 1.2431 0.26895 Var3^2 -0.38241 1.2132 -0.31521 0.76534 Number of observations: 7, Error degrees of freedom: 5 Root Mean Squared Error: 0.572
.

Catégories

En savoir plus sur Linear and Nonlinear Regression dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by