I wrote this code,but the plot is not what I want.how can I get the plot like below picture?

1 vue (au cours des 30 derniers jours)
% nonlinear constraint optimization function
prob=optimproblem
x=optimvar('x','LowerBound',-10,'UpperBound',10);
y=optimvar('y','LowerBound',-10);
obj=fcn2optimexpr(@objectivefunction,x,y)
prob.Objective=obj
constr=x.*y/2+(x+2).^2+(y-2).^2/2<=2 %polynomial inequality
prob.Constraints.ellipseparabola=constr
a=4
constexp=fcn2optimexpr(@constraintfunction,x,y,a)
consr2=constexp<=2
prob.Constraints.exponentialConstr=consr2
x0.x=-3
x0.y=3
options=optimoptions(prob,'Display','iter')
[sol,fval,exitflag,output]= solve(prob,x0,"options",options)
x0.x = -3;
x0.y = 4;
[sol2,fval2] = solve(prob,x0)
fprintf("Fval = %g\nNumber of iterations = %g\nNumber of function evals = %g.\n",...
fval,output.iterations,output.funcCount)
rng default
f = @(x,y) exp(x).*(4*x^2+2*y.^2+4*x.*y+2*y-1);
figure1
plot(sol.x,sol.y,"y*",'LineWidth',2)
hold on
plot(sol2.x,sol2.y,"r*",'LineWidth',2)
%rnge = [-5.5 -0.25 -0.25 7];
rng default
fcontour(f,'-.','LineWidth',2)
legend("nonlinear constraints problem","Location","northoutside")
hold off
% objective function
function f=objectivefunction(x,y)
f=exp(x).*(4*x^2+2*y.^2+4*x.*y+2*y-1)
end
%constraint
function constr=constraintfunction(x,y,a)
constr=x+2*exp((y-a)/4);
end
  7 commentaires
sogol bandekian
sogol bandekian le 22 Mai 2022
it is not generate local solution,why?
f = @(x,y) exp(x).*(4*x.^2+2*y.^2+4*x.*y+2*y-1);
w=@(x,y) x.*y/2+(x+2).^2+(y-2).^2/2-2;
rnge = [-5.5 -0.25 -0.25 7];
fimplicit(w,'kx-') %plot implicit function with consideration constraint
axis(rnge)
hold on
fcontour(f,rnge,'-.','LineWidth',2,'LevelList',logspace(-1,1))
plot(sol.x,sol.y,"ko",'LineWidth',2)
plot(sol2.x,sol2.y,"ro",'LineWidth',2) %Global solution
legend('nonlinear constraints problem','f Contours','Global Solution','Local Solution',"Location","northoutside")
hold off
Voss
Voss le 22 Mai 2022
It is plotting both "Local" and "Global" solutions, but they are the same, so you only see the last one plotted (one is on top of the other).
If you want the solution(s) from the example in the documentation, you should use the starting point(s) from the example in the documentation:
x0.x = -1;
x0.y = 1;
[sol2,fval2] = solve(prob,x0)
Also, you've got Local in black, Global in red (according to the comment), but then the legend labels black as Global, red as Local. Check on that.

Connectez-vous pour commenter.

Réponses (0)

Catégories

En savoir plus sur Nonlinear Optimization dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by