how do I solve symbolic eigenvalue?
21 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
this is my code:
syms ei l
h=l/4;
k=(2*ei/h^3)*[6 -3*h -6 -3*h; -3*h 2*h^2 3*h h^2; -6 3*h 6 3*h; -3*h h^2 3*h 2*h^2];
m=(1/(30*h))*[36 -3*h -36 -3*h; -3*h 4*h^2 3*h -h^2; -36 3*h 36 3*h; -3*h -h^2 3*h 4*h^2];
K(1,:)=[];
K(:,1)=[];
M(1,:)=[];
M(:,1)=[];
[v,d]=eig(K,M)
i recieved this error:
Error using sym/eig
Too many input arguments.
what should i do?
2 commentaires
Star Strider
le 20 Mai 2022
syms ei l
h=l/4;
k=(2*ei/h^3)*[6 -3*h -6 -3*h; -3*h 2*h^2 3*h h^2; -6 3*h 6 3*h; -3*h h^2 3*h 2*h^2];
m=(1/(30*h))*[36 -3*h -36 -3*h; -3*h 4*h^2 3*h -h^2; -36 3*h 36 3*h; -3*h -h^2 3*h 4*h^2];
% K(1,:)=[];
% K(:,1)=[];
% M(1,:)=[];
% M(:,1)=[];
[v,d]=eig(k)
.
Réponses (2)
VBBV
le 23 Fév 2023
I presume you need to compute the inverse of mass matrix , m, for a 4 x 4 stiffness matrix , before finding the Eigen solution. However, check the equations if they are correct
syms ei l
h=l/4;
k=(2*ei/h^3)*[6 -3*h -6 -3*h; -3*h 2*h^2 3*h h^2; -6 3*h 6 3*h; -3*h h^2 3*h 2*h^2]
m=(1/(30*h))*[36 -3*h -36 -3*h; -3*h 4*h^2 3*h -h^2; -36 3*h 36 3*h; -3*h -h^2 3*h 4*h^2]
V = m\k % Take the inverse of matrix m
[v,d]=eig(V) % only one argument
0 commentaires
Torsten
le 23 Fév 2023
syms ei l
h=l/4;
k=(2*ei/h^3)*[6 -3*h -6 -3*h; -3*h 2*h^2 3*h h^2; -6 3*h 6 3*h; -3*h h^2 3*h 2*h^2];
m=(1/(30*h))*[36 -3*h -36 -3*h; -3*h 4*h^2 3*h -h^2; -36 3*h 36 3*h; -3*h -h^2 3*h 4*h^2];
k(1,:)=[];
k(:,1)=[];
m(1,:)=[];
m(:,1)=[];
[v,d]=eig(inv(m)*k)
0 commentaires
Voir également
Catégories
En savoir plus sur Linear Algebra dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!








