Trouble trying to plot the output of an input signal with an impulse response
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Here is my code where I took the convolution of an input signal x(t) and the impulse response h(t). I took the laplace of each signal and multiplied those laplace values. My problem is trying to plot the impulse response. I tried to define t from 0 - 10 seconds with a dt of 0.01, but this would error out when I tried to find my Laplace results for X(s) and H(s), so I removed it and it worked fine. However, I am not sure how to plot the impulse response and output response y(t) without a defined t value? Any help would be greatly appreciated. Here is my code:
syms t s;
>> x = (5/7)*exp(-t) - (12/7)*exp(-8*t); % x = x(t)
>> h = cos(2*t) + 4*sin(2*t); % h = h(t)
>> % Define the Laplace of the impulse function h(t) = cos(2t) + 4sin(2t)
>> H = laplace(cos(2*t) + 4*sin(2*t)); % H = H(s)
>> pretty(H)
s 8
------ + ------
2 2
s + 4 s + 4
% Define the Laplace of the input function x(t) = (5/7)e(-t) - (12/7)e(-8t)
>> X = laplace((5/7)*exp(-t) - (12/7)*exp(-8*t)); % X = X(s)
>> pretty(X)
5 12
--------- - ---------
7 (s + 1) 7 (s + 8)
% Define Y(s) as the convolution of x(t) * h(t) = X(s) x H(s)
Y = X*H; % Y = Y(s)
pretty(Y)
/ 5 12 \ / s 8 \
| --------- - --------- | | ------ + ------ |
\ 7 (s + 1) 7 (s + 8) / | 2 2 |
\ s + 4 s + 4 /
% Define the Inverse Laplace of Y(s) = [(5/(7(s + 1))) - (12/(7(s + 8)))]*[(s/(s^2 + 4) + (8/(s^2 + 4)]
y = ilaplace(Y); % y = y(t)
pretty(y)
exp(-t) - cos(2 t)
subplot(312)
plot(t,x);
Error using plot
Data must be numeric, datetime, duration or an array convertible to double.
0 commentaires
Réponses (2)
Star Strider
le 4 Juin 2022
syms t s;
x = (5/7)*exp(-t) - (12/7)*exp(-8*t); % x = x(t)
h = cos(2*t) + 4*sin(2*t); % h = h(t)
% Define the Laplace of the impulse function h(t) = cos(2t) + 4sin(2t)
H = laplace(cos(2*t) + 4*sin(2*t)); % H = H(s)
% pretty(H)
H
% Define the Laplace of the input function x(t) = (5/7)e(-t) - (12/7)e(-8t)
X = laplace((5/7)*exp(-t) - (12/7)*exp(-8*t)); % X = X(s)
% pretty(X)
X
% Define Y(s) as the convolution of x(t) * h(t) = X(s) x H(s)
Y = X*H; % Y = Y(s)
% pretty(Y)
Y
% Define the Inverse Laplace of Y(s) = [(5/(7(s + 1))) - (12/(7(s + 8)))]*[(s/(s^2 + 4) + (8/(s^2 + 4)]
y = ilaplace(Y); % y = y(t)
% pretty(y)
subplot(312)
fplot(x, [0 10]);
grid
.
2 commentaires
Star Strider
le 4 Juin 2022
My pleasure!
If my Answer helped you solve your problem, please Accept it!
.
Voir également
Catégories
En savoir plus sur Calculus dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

