How to solve the Lyapunov equation with unknowns
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Abdelkader Hd
le 25 Juil 2022
Modifié(e) : Torsten
le 26 Juil 2022
I'd like to ask those with unknowns Lyapunov What function does the equation use
The original equation is MV+VM‘=-D,
The matrix code is like this , There is only one unknown :
M=[0 w1 0 0 0 0;-q1 -r1 0 0 -g1u -g1v;0 0 0 w2 0 0;0 0 -q2 -r2 -g2u -g2v;g1v 0 g2v 0 -k x;-g1u 0 -g2u 0 -x -k];
d=[0 r1*(2n1+1) 0 r2(2*n2+1) k k];
D=diag(d);
V=lyap(M,D)
The following error occurred after running , Only numeric matrices can be calculated :
Misuse lyap (line 35)
The input arguments of the "lyap" command must be numeric arrays.
error Untitled (line 38)
V=lyap(M,D)
Thank you
6 commentaires
Sam Chak
le 26 Juil 2022
Modifié(e) : Sam Chak
le 26 Juil 2022
I'm not good at magnomechanics, but it can clearly says that the elements of 𝒱are fully defined as function of u
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1077055/image.png)
and in Eq. (3), it is given that
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1077060/image.png)
So, maybe you can use ode45() to solve for
. Then, you can find a steady-state 𝒱 when
no longer change in time..
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1077065/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1077065/image.png)
Réponse acceptée
Ivo Houtzager
le 25 Juil 2022
One inefficient way is too convert the Lyaponuv Matrix equation to linear system using the vectorization rule, and solve the linear system.
A = kron(eye(6),M) + kron(M,eye(6));
B = D(:);
X = A\B;
V = reshape(X,6,6);
8 commentaires
Torsten
le 26 Juil 2022
Modifié(e) : Torsten
le 26 Juil 2022
If "\" and "kron" can deal with symbolic parameters, then in principle the problem can be solved using Ivo Houtzager 's suggestion. The inversion of a matrix does only use subdeterminants of the matrix itself - no roots are needed.
But even if it theoretically works: for a 36x36 or even 144x144 matrix, the expressions involved will become useless in my opinion.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Linear Algebra dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!