error from a relationship
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
oahfidsigbosga igoahaighaoeighoaw lagihsgibsohgaiesubg \suigh\seugbeisugi\seubvieu usgziseugbisu\bgzdbgz zgbzdsgubgisugziu fu\iesgi\eliueg\zjxbvkzsdbgi khifsohi\eg
1 commentaire
Star Strider
le 4 Mar 2015
Context: ‘Mary292’ originally asked how to determine the error with respect to a linear regression applied to perturbed data with a model derived from unperturbed data on the same system. The system was initially unperturbed (the first 2000 data pairs, on which the regression was performed), then perturbed.
Réponse acceptée
Star Strider
le 21 Fév 2015
Your model is the linear regression of the first 2000 points. To get the model predictions for the rest of the data, ‘plug in’ the values for your independent variable for the rest of your data in your model. The output of your model are the predictions for those values. To get the error, subtract your predictions from the dependent variable data for those same values of the independent variable.
To illustrate:
x = linspace(0,200); % Create Data
y1 = 0.5*x(1:50) + 0.1*randn(1,50) + 1.2; % Create Data To Fit
y2 = 0.6*x(51:100) + 0.1*randn(1,50) + 1.5; % Create Data To Evaluate Error
b = polyfit(x(1:50), y1, 1); % Parameter Estimates
yfit = polyval(b, x); % Predict Entire Data Set
model_error = yfit - [y1 y2]; % Calculate Error
figure(1)
plot(x, [y1 y2], 'xr')
hold on
plot(x, yfit, '-b')
hold off
grid
legend('Data', 'Model Fit', 'Location','SE')
5 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Linear and Nonlinear Regression dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!