How to not use for loop

9 vues (au cours des 30 derniers jours)
Declan
Declan le 7 Sep 2022
Commenté : Torsten le 7 Sep 2022
Hi, I have a function that I am trying to get rid of the for loop and rewrite the function so that it doesnt use any loops. I have looked on various links like the Vector Creation (https://au.mathworks.com/help/matlab/ref/colon.html) and Vectorisation (https://au.mathworks.com/help/matlab/matlab_prog/vectorization.html) but I still cant get it to work. Below I have the function with the for loop.
function dfdx = ddx(f, h)
% Add description, name, date, inputs, outputs
dfdx = nan(size(f));
dfdx(1) = (f(2) - f(1))/h;
for j = 2:length(f)-1;
dfdx(j) = 0.5*(f(j+1) - f(j-1))/h;
end
dfdx(end) = (f(end) - f(end-1))/h;
And here is the code to call the function
format compact
a = randn(2, 1)
x = linspace(-1, 1, 20) % equispaced x
f = a(1) + a(2)*x % function values
dfdx = ddx(f, x(2)-x(1)) % derivatives should be exact for linear
computeError = a(2) - dfdx % should be zeros to 1e-15

Réponse acceptée

Star Strider
Star Strider le 7 Sep 2022
Modifié(e) : Star Strider le 7 Sep 2022
Try something like this —
format compact
a = randn(2, 1)
a = 2×1
0.4175 1.4768
x = linspace(-1, 1, 20) % equispaced x
x = 1×20
-1.0000 -0.8947 -0.7895 -0.6842 -0.5789 -0.4737 -0.3684 -0.2632 -0.1579 -0.0526 0.0526 0.1579 0.2632 0.3684 0.4737 0.5789 0.6842 0.7895 0.8947 1.0000
f = a(1) + a(2)*x % function values
f = 1×20
-1.0593 -0.9038 -0.7484 -0.5929 -0.4374 -0.2820 -0.1265 0.0289 0.1844 0.3398 0.4953 0.6507 0.8062 0.9616 1.1171 1.2725 1.4280 1.5835 1.7389 1.8944
dfdx = ddx(f, x(2)-x(1)) % derivatives should be exact for linear
dfdx = 1×20
1.4768 1.4768 1.4768 1.4768 1.4768 1.4768 1.4768 1.4768 1.4768 1.4768 1.4768 1.4768 1.4768 1.4768 1.4768 1.4768 1.4768 1.4768 1.4768 1.4768
computeError = a(2) - dfdx % should be zeros to 1e-15
computeError = 1×20
1.0e-14 * -0.0444 -0.0444 0.3775 -0.0444 0.3331 0.1776 0.0666 0.2220 0.1332 0.1332 0.1776 0.1110 0.1776 0.1776 0.1776 0.1776 0.1776 -0.0444 0.3775 -0.0444
function dfdx = ddx(f,h)
dfdx(1) = (f(2) - f(1))/h;
dfdx(2:numel(f)) = (f(2:end) - f(1:end-1))/h;
end
EDIT — The gradient function already exists to do this, however I’m assuming here that you want to write your own function to do the numerical derivative.
.
  4 commentaires
Star Strider
Star Strider le 7 Sep 2022
@Declan — As always, my pleasure!
I checked it against the gradient function and both gave the same result.
That was my criterion —
format compact
a = randn(2, 1)
a = 2×1
0.6877 1.4736
x = linspace(-1, 1, 20) % equispaced x
x = 1×20
-1.0000 -0.8947 -0.7895 -0.6842 -0.5789 -0.4737 -0.3684 -0.2632 -0.1579 -0.0526 0.0526 0.1579 0.2632 0.3684 0.4737 0.5789 0.6842 0.7895 0.8947 1.0000
f = a(1) + a(2)*x % function values
f = 1×20
-0.7859 -0.6307 -0.4756 -0.3205 -0.1654 -0.0103 0.1448 0.2999 0.4550 0.6102 0.7653 0.9204 1.0755 1.2306 1.3857 1.5408 1.6959 1.8510 2.0062 2.1613
dfdx = ddx(f, x(2)-x(1)) % derivatives should be exact for linear
dfdx = 1×20
1.4736 1.4736 1.4736 1.4736 1.4736 1.4736 1.4736 1.4736 1.4736 1.4736 1.4736 1.4736 1.4736 1.4736 1.4736 1.4736 1.4736 1.4736 1.4736 1.4736
computeError = a(2) - dfdx % should be zeros to 1e-15
computeError = 1×20
1.0e-14 * 0.0666 0.0666 0.2887 -0.1332 0.3775 0.0666 0.1776 0.1776 0.1776 0.1776 0.0666 0.1776 0.2887 0.0666 0.0666 0.2887 0.2887 -0.1332 0.2887 -0.1332
CompareResults = ["gradient" gradient(f, x(2)-x(1)); "ddx" dfdx]
CompareResults = 2×21 string array
"gradient" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "ddx" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736" "1.4736"
function dfdx = ddx(f,h)
dfdx(1) = (f(2) - f(1))/h;
dfdx(2:numel(f)) = (f(2:end) - f(1:end-1))/h;
end
.
Torsten
Torsten le 7 Sep 2022
Yes, for linear functions, centered and forward differencing to approximate the derivative give the same result.

Connectez-vous pour commenter.

Plus de réponses (1)

Torsten
Torsten le 7 Sep 2022
Modifié(e) : Torsten le 7 Sep 2022
function dfdx = ddx(f, h)
dfdx = gradient(f,h);
end
  2 commentaires
Declan
Declan le 7 Sep 2022
Oh, I didnt realise that there was a gradient function inbuilt. Thanks!
Stephen23
Stephen23 le 7 Sep 2022
+1 very neat.

Connectez-vous pour commenter.

Catégories

En savoir plus sur MATLAB dans Help Center et File Exchange

Tags

Produits


Version

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by