negative values kernel density estimation
6 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I have obtained the monthly temperature distribution using kernel density estimate. And using SVD(Singular Value Decomposition) and regression model, I forecast the monthly temperature distribution. But I found that some estimated kernel density values are negative. How to deal with these negative values?
10 commentaires
Adam Danz
le 22 Déc 2022
> So you mean that I should delete the negative values in z
No, I would take a step back and investigate. Do you expect there to be negative values in z? If not, then how did they get there? Perhaps something went wrong with your calculations of z or perhaps your expectations of what z should be aren't correct expectations. If you do expect there to be negative values in z or that negative values are possible, then I would re-think whether it is a problem that the forecast produces negative values.
If z isn't meaningful data and you're using z to poke around at the model, then it's completely fine to replace the negative values or use an entirely different set of data. But if z is meaningful data, you can't just delete some values because they are causing problems.
I don't know enough about what the data are or about the forecasting you're using to suggest the next steps.
Réponses (0)
Voir également
Catégories
En savoir plus sur Gaussian Process Regression dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!