@(T,X)SSMODEL must return a column vector ERROR
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
EREN ÖZGÜR
le 28 Déc 2022
Réponse apportée : Jan Studnicka
le 28 Déc 2022
function dx = ssmodel(t,x)
syms alpha1 alpha2 alpha3 alpha4 x
A = [0 1 0 0; 0 0 1 0; 0 0 0 1; -alpha4 -alpha3 -alpha2 -alpha1];
B = [0; 0; 0; 1];
K = [16-alpha4 32-alpha3 24-alpha2 8-alpha1];
u = -K*x;
dx = A*x + B*u;
end
x0 = [-1; -1; -2; -2];
tspan = [0, 10, 100];
[t,x] = ode45(@(t,x) ssmodel,tspan,x0);
plot(t,x)
Error using odearguments (line 93)
@(T,X)SSMODEL must return a column vector.
Error in ode45 (line 106)
odearguments(FcnHandlesUsed, solver_name, ode, tspan, y0, options, varargin);
Error in multiodev (line 23)
[t,x] = ode45(@(t,x) ssmodel,tspan,x0);
How can i solve this error ? Please help me.
0 commentaires
Réponse acceptée
Star Strider
le 28 Déc 2022
I have no idea what ‘alpha’ is, however it must be numeric and not symbolic. It needs to be passed as an extra argument to ‘ssmodel’ in any event.
This works, however it will be necessary to understand what you want to do in order to provide a complete answer —
x0 = [-1; -1; -2; -2];
tspan = [0, 10, 100];
a = randn(1,4);
[t,x] = ode45(@(t,x)ssmodel(t,x,a),tspan,x0);
plot(t,x)
function dx = ssmodel(t,x,alpha)
A = [0 1 0 0; 0 0 1 0; 0 0 0 1; -alpha(4) -alpha(3) -alpha(2) -alpha(1)];
B = [0; 0; 0; 1];
K = [16-alpha(4) 32-alpha(3) 24-alpha(2) 8-alpha(1)];
u = -K*x;
dx = A*x + B*u;
end
.
0 commentaires
Plus de réponses (1)
Jan Studnicka
le 28 Déc 2022
The ssmodel function must be defined as described in the documentation:
You cannot use symbolic expressions with ode45:
and I believe that you want to create a model with parameters alpha1 alpha2 alpha3 alpha4. I suggest you do that this way:
x0 = [-1; -1; -2; -2];
tspan = [0, 10, 100];
alpha = [0 0 0 0]; % You need to set alpha before applying ode45
[t,x] = ode45(@(t,x) ssmodel(t,x,alpha),tspan,x0);
plot(t,x)
function dx = ssmodel(t,x, alpha)
% alpha is vector of length 4
A = [0 1 0 0; 0 0 1 0; 0 0 0 1; -alpha(4) -alpha(3) -alpha(2) -alpha(1)];
B = [0; 0; 0; 1];
K = [16-alpha(4) 32-alpha(3) 24-alpha(2) 8-alpha(1)];
u = -K*x;
dx = A*x + B*u;
end
0 commentaires
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!