Create a function handle that is a sum of function handles
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Goodmorning everyone,
I have the following points
POINTS=[0.0194358127458200 0.0125146090698240 0.0120324235527160 0.00761174198214000 0.00660775699279100 0.00381485098617300 0.00195617023840500 0.000824508358196000 0.00121681256884900 0.000390389885216000 0.000444315057222000 0;
0 0.000452782917043000 0.000395689955442000 0.00121172812659200 0.000829869449880000 0.00195546440425700 0.00381482017361200 0.00661064156533300 0.00762496776011900 0.0120411026638820 0.0125098828784870 0.0189137987850580];
I need to create a function handle as follows.
I know that the center of the circumference that approximates better those points is function of R, and is found in the point [R,R]. The approximation error is then:
error=@(R) abs(norm([R-POINTS(1,i),R-POINTS(2,i)])-R));
This for every point.
I want to create the function handle that is the sum of all the errors like:
1) totdist=@(R) error1+error2+error3+...
I can create a single function function manually by summing every error like:
2) totdist=@(R) abs(norm([R-POINTS(1,1),R-POINTS(2,1)])-R))+abs(norm([R-POINTS(1,2),R-POINTS(2,2)])-R))+abs(norm([R-POINTS(1,3),R-POINTS(2,3)])-R))+...
However when the number of points become large, I would like to create the summing function 1) authomatically without manually summing 100 times as in 2).
The function must be used with "fminsearch" afterwards.
Is there a way to achieve this?
Thanks in advance for the answer.
1 commentaire
Bjorn Gustavsson
le 14 Jan 2023
@Riccardo Mari: at least try to work through the suggestions to see what they do. Use simple test-cases.
Réponses (3)
Bjorn Gustavsson
le 13 Jan 2023
Your specification is a bit ambiguous to me, but if I interpret it such that you want to fit a function such that:

(I've used the additional condition that
and
, but this one can be easily relaxed). You can make a general solution something like this:


f_x = @(R,theta,f_theta) R + f_theta(R,theta).*cos(theta);
f_y = @(R,theta,f_theta) R + f_theta(R,theta).*sin(theta);
err_fcn = @(R,X,Y,f_theta) sum( (X-f_x(R,atan2(Y-R,X-R),f_theta)).^2 + (Y-f_y(R,atan2(Y-R,X-R),f_theta)).^2);
f_theta = @(R,theta) R*ones(size(theta));
Rest = fminsearch(@(R) err_fcn(R,POINTS(1,:)',POINTS(2,:)',f_theta),20e-3);
This is a rather cumbersome way to make a simple circle-fitting-function, you will find multiple circle-fitting-functions on the file exchange: circle-fitting FEx contributions. If your circumference is a bit more complicated, even more complicated than an ellipse even, then you simply have to modify the f_theta function-handle accordingly. If the centre of the circumference is not exactly the same as the radius for example then you'll have to modify the above snippet a bit:
f_x = @(R,theta,f_theta) R(1) + f_theta(R(3),theta).*cos(theta);
f_y = @(R,theta,f_theta) R(2) + f_theta(R(3),theta).*sin(theta);
err_fcn = @(R,X,Y,f_theta) sum( (X-f_x(R,atan2(Y-R(2),X-R(1)),f_theta)).^2 + (Y-f_y(R,atan2(Y-R(2),X-R(1)),f_theta)).^2);
f_theta = @(R,theta) R*ones(size(theta));
Rest3 = fminsearch(@(R) err_fcn(R,POINTS(1,:)',POINTS(2,:)',f_theta),20e-3*[1 1 1]);
You can also allow for additional parameters to fit to, for example major and minor radius and angle of semi-major axis of an ellipse. But, this starts to become rather cluttered code for anonymous function-handles at this stage and somewhere here I tend to transition to proper matlab-functions in files, just to keep the code cleaner.
HTH
2 commentaires
Bjorn Gustavsson
le 13 Jan 2023
Modifié(e) : Bjorn Gustavsson
le 13 Jan 2023
That's what my first example does. For general circle-fitting functions follow the link to the good file-exchange contributions that solve that problem for the more general case.
HTH
Matt J
le 13 Jan 2023
error=@(R) abs( vecnorm(POINTS-R) - R );
1 commentaire
Matt J
le 13 Jan 2023
Modifié(e) : Matt J
le 13 Jan 2023
I have to measure the error in the distance as error=@(R) abs(norm([R-POINTS(1,i),R-POINTS(2,i)])-R)) .... So I have to apply this to every point in the list.
No, you do not have to implement a separate error function for every Point(:,i). There are vectorized functions which calculate all errors at once, which is what my answer has given you.
I want to find the radius that minimizes the total error.
If you know the center [x0,y0] of the circle already, the minimizing R is just the average of the empricial distances. There is no need for fminsearch.
R = mean(vecnorm(POINTS-[x0;y0]))
Riccardo Mari
le 13 Jan 2023
1 commentaire
Matt J
le 13 Jan 2023
Modifié(e) : Matt J
le 13 Jan 2023
It's a bad solution. Very slow and inefficient. I urge you to reconsider the other proposals.
POINTS=rand(2,100000); R=0;
tic;
N=length(POINTS);
f=cell(N,1);
for i=1:N
f{i}=@(R) abs(norm([R-POINTS(1,i),R-POINTS(2,i)])-R);
end
totdist=@(R) summer(f,R);
version1=totdist(R); %calculation
toc;
tic
errorFcn=@(R) norm( vecnorm(POINTS-R) - R ,1);
version2=errorFcn(R);%calculation
toc
version1,version2 %same result
Voir également
Catégories
En savoir plus sur Matched Filter and Ambiguity Function dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!