# x values when taking a numerical derivative

19 vues (au cours des 30 derniers jours)
L'O.G. le 6 Fév 2023
Commenté : Star Strider le 6 Fév 2023
I want to calculate the first derivative f(x) = dy/dx for data that is irregularly spaced in x. I think (correct me if I'm wrong) this can be done by diff(y)./diff(x)
But the resulting vector is one less than the length of the x and y vectors, so what are the corresponding x values? I want to then calculate x dy/dx, so it would be helpful to know what to use.
##### 0 commentairesAfficher -2 commentaires plus anciensMasquer -2 commentaires plus anciens

Connectez-vous pour commenter.

### Réponse acceptée

Star Strider le 6 Fév 2023
I think (correct me if I'm wrong) this can be done by diff(y)./diff(x)
Not actually wrong, simply mistaken with respect to expecting that the result of diff will be what you want.
Use the gradient function (or Torsten’s approach, that does essentially the same operation) instead:
.
##### 6 commentairesAfficher 4 commentaires plus anciensMasquer 4 commentaires plus anciens
Torsten le 6 Fév 2023
the support page for gradient says that FX = gradient(F) corresponds to /, so why do you recommend dividing by the gradient in x in this case?
Because in the case FX = gradient(F), the distance between the x values is assumed to be 1 for all of them.
Or do you think MATLAB knows how your x vector looks like if you don't supply it ?
Star Strider le 6 Fév 2023
@Torsten — Thank you!

Connectez-vous pour commenter.

### Plus de réponses (4)

Sulaymon Eshkabilov le 6 Fév 2023
Yes, you are right, e.g.:
x = [0 .2 .3 .45 .65 .75 .96]
x = 1×7
0 0.2000 0.3000 0.4500 0.6500 0.7500 0.9600
y = [-3 10 11 12 13 12 9]
y = 1×7
-3 10 11 12 13 12 9
dydx = diff(y)./diff(x)
dydx = 1×6
65.0000 10.0000 6.6667 5.0000 -10.0000 -14.2857
yyaxis left
plot(x, y, 'b-o', 'MarkerFaceColor', 'y', 'DisplayName', 'y(x)')
ylabel('y(x)')
yyaxis right
plot(x(1:end-1), dydx, 'r--p', 'MarkerFaceColor','c','DisplayName', 'dy/dx')
ylabel('dy/dx')
xlabel('x')
grid on
legend show
##### 2 commentairesAfficher AucuneMasquer Aucune
L'O.G. le 6 Fév 2023
Modifié(e) : L'O.G. le 6 Fév 2023
Thanks. So just to be clear, why does dydx(end-1) correspond to x(end)?
Sulaymon Eshkabilov le 6 Fév 2023
difference1 is between 1 and 2 and then 2 and 3, etc., and thus end-1

Connectez-vous pour commenter.

Tushar Behera le 6 Fév 2023
Modifié(e) : Tushar Behera le 6 Fév 2023
Hi L'O.G,
I believe you want to calculate derivate for two separate datasets. In order to do that you can use 'diff(y)./diff(x)' for example:
clc;
clear;
close all;
x=linspace(0,2*pi,100);
y=sin(x);
yp=cos(x);
dx=diff(x);
dy=diff(y);
yp_hat=dy./dx;
err=yp(1:end-1)-yp_hat;
figure;
subplot(1,2,1);
plot(x,y);
hold on;
plot(x(1:end-1),yp_hat)
xlabel('x');
ylabel('y');
legend('original function','Approx derivative');
grid on;
subplot(1,2,2);
plot(x(1:end-1),err);
xlabel('x');
ylabel('error');
here 'x' and 'y' are two vectors and by using 'diff(y)./diff(x)' you can calculate the first order derivate which is 'cos(x)'. To answer the question which values of x corresponds to which 'yp_hat' . you can get that by using,
x(1:end-1)
I hope this solves your query.
Regards,
Tushar
##### 0 commentairesAfficher -2 commentaires plus anciensMasquer -2 commentaires plus anciens

Connectez-vous pour commenter.

Torsten le 6 Fév 2023
Modifié(e) : Torsten le 6 Fév 2023
Use
n = numel(y);
dydx(1) = (y(2) - y(1))/(x(2) - x(1));
dydx(2:n-1) = (y(3:n) - y(1:n-2))./(x(3:n) - x(1:n-2));
dydx(n) = (y(n) - y(n-1))/(x(n) - x(n-1));
##### 0 commentairesAfficher -2 commentaires plus anciensMasquer -2 commentaires plus anciens

Connectez-vous pour commenter.

Sulaymon Eshkabilov le 6 Fév 2023
Modifié(e) : Sulaymon Eshkabilov le 6 Fév 2023
There will be some significantly different results from diff() and gradient() if the increment of x varies. See this simulation:
x = [0 .2 .3 .45 .65 .75 .96];
y = [-3 10 11 12 13 12 9];
dy1 = diff(y)./diff(x);
for ii = 1:length(x)-1
dy3(ii) = (y(ii+1)-y(ii))/(x(ii+1)-x(ii));
end
N = numel(y);
dy4(1) = (y(2)-y(1))/(x(2)-x(1));
dy4(2:N-1) = (y(3:N)-y(2:N-1))./(x(3:end)-x(2:end-1));
dy4(N) = (y(end)-y(end-1))/(x(end)-x(end-1));
plot(x(1:end-1), dy1, 'b-o', 'MarkerFaceColor', 'y', 'DisplayName', 'diff', 'markersize', 13)
hold on
plot(x(1:end), dy2, 'rs--', 'MarkerFaceColor', 'c', 'DisplayName', 'gradient')
plot(x(1:end-1), dy3, 'g--p', 'MarkerFaceColor','y','DisplayName', 'Loop computed difference', 'MarkerSize', 10)
hold on
plot(x(1:end), dy4, 'k--h', 'MarkerFaceColor','c','DisplayName', 'vectorized: gradient')
ylabel('dy/dx')
xlabel('x')
grid on
legend show
% Note that as the increment of x gets smaller the error (offset) will also
% diminish. See this example: dx = 0.063467 vs. dx = 0.006289:
x=linspace(0,2*pi,100);
dx = x(2);
y=sin(x);
ANS=cos(x);
dY1=diff(y)./diff(x);
for ii = 1:length(x)-1
dY3(ii) = (y(ii+1)-y(ii))/(x(ii+1)-x(ii)); % The same as diff()
end
n = numel(y);
dY4(1) = (y(2)-y(1))/(x(2)-x(1));
dY4(2:n-1) = (y(3:end)-y(1:end-2))./(x(3:end)-x(1:end-2));
dY4(n) = (y(end)-y(end-1))/(x(end)-x(end-1));
E1=ANS(1:end-1)-dY1;
E2 = ANS-dY2;
E3 = ANS(1:end-1)-dY3;
E4 = ANS-dY4;
fprintf(['Norm of errors @ dx = %f: ' ...
'E_diff = %f; E_gradient = %f; ' ...
'E_loop = %f; E_grad_vect = %f \n'], [dx, norm(E1) norm(E2) norm(E3) norm(E4)])
Norm of errors @ dx = 0.063467: E_diff = 0.223238; E_gradient = 0.004770; E_loop = 0.223238; E_grad_vect = 0.004770
% 10 times smaller incremental step of x than the previous example leads to
% the reduction of error norm to more than 3 times
x=linspace(0,2*pi,1000);
dx = x(2);
y=sin(x);
ANS=cos(x);
dY1=diff(y)./diff(x);
for ii = 1:length(x)-1
dY3(ii) = (y(ii+1)-y(ii))/(x(ii+1)-x(ii)); % The same as diff()
end
n = numel(y);
dY4(1) = (y(2)-y(1))/(x(2)-x(1));
dY4(2:n-1) = (y(3:end)-y(1:end-2))./(x(3:end)-x(1:end-2));
dY4(n) = (y(end)-y(end-1))/(x(end)-x(end-1));
E1=ANS(1:end-1)-dY1;
E2 = ANS-dY2;
E3 = ANS(1:end-1)-dY3;
E4 = ANS-dY4;
fprintf(['Norm of errors @ dx = %f: ' ...
'E_diff = %f; E_gradient = %f; ' ...
'E_loop = %f; E_grad_vect = %f \n'], [dx, norm(E1) norm(E2) norm(E3) norm(E4)])
Norm of errors @ dx = 0.006289: E_diff = 0.070283; E_gradient = 0.000147; E_loop = 0.070283; E_grad_vect = 0.000147
##### 0 commentairesAfficher -2 commentaires plus anciensMasquer -2 commentaires plus anciens

Connectez-vous pour commenter.

### Catégories

En savoir plus sur Specifying Target for Graphics Output dans Help Center et File Exchange

R2021b

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by