How to use trainNetwork with transform datastore with multiple outputs?

5 vues (au cours des 30 derniers jours)
Noam
Noam le 9 Fév 2023
Commenté : Noam le 9 Fév 2023
my code create a audioDataStore, transform it to yamnet features (mel spectrum) and try to train it.
But i get the following error:
Input datastore returned more than one observation per row for network input 1.
The code:
net = yamnet;
DS = audioDatastore(FolderName, ...
'FileExtensions',{'.wav','.mp3'},"IncludeSubfolders",true,'LabelSource','foldernames');
DS.Labels = setcats(DS.Labels,cellstr(net.Layers(86).Classes));
TR = transform(DS,@(audio,info)preProcess(audio,info),"IncludeInfo",true);
options = trainingOptions("adam");
trainNetwork(TR,net.Layers,options)
function [data,info] = preProcess(audio,info)
data{1} = yamnetPreprocess(audio,info.SampleRate);
data{2} = repmat(info.Label,1,size(data{1},4));
end
Yamnet produce multiple observations for each audio file (for instance, for 10 seconds file it will create 96×64×1×19 matrix which are 19 observations. For some reason trainNetwork want only one observation, how do I fix it?

Réponse acceptée

jibrahim
jibrahim le 9 Fév 2023
Hi Noam,
Check out this example:
The example uses a transformed datastore as well. the transformation function is at the bottom:
function [data,info] = audioPreprocess(audioIn,info)
class = info.Label;
fs = info.SampleRate;
features = yamnetPreprocess(audioIn,fs);
numSpectrograms = size(features,4);
data = cell(numSpectrograms,2);
for index = 1:numSpectrograms
data{index,1} = features(:,:,:,index);
data{index,2} = class;
end
end

Plus de réponses (0)

Catégories

En savoir plus sur Pretrained Models dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by