Foucault Pendulum
14 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I am inexperienced with matlab and have not used the ODE command before. I am trying write a code for the Foucault pendulum. I know there are example on the interent but they are not too helpful.
Here are my two differential equations and initial conditions
ddot(x) + (Omega^2)*x - 2*P*dot(y) = 0
ddot(y) - (Omega^2)*x - 2*P*dot(y) = 0
g = 9.81; % acceleration of gravity (m/sec^2)
l = 60; % pendulum length (m)
b = .2;
initial_x = .2; % initial x coordinate (m)
initial_y = b/2; % initial y coordinate (m)
initial_xdot = 0; % initial x velocity (m/sec)
initial_ydot = 0; % initial y velocity (m/sec)
Omega=2*pi/86400; % Earth's angular velocity of rotation about its axis (rad/sec)
lambda=0/180*pi; % (0, 30, 60, 90)latitude in (rad)
P=Omega*sin(lambda)
C=(g/l)^2;
0 commentaires
Réponse acceptée
Grzegorz Knor
le 25 Oct 2011
First of all you have to reduce the order of an ODEs:
Next write fuction that describes the problem:
function dy = focaultPendulum(t,y)
% define your constants
dy = zeros(4,1);
dy(1) = y(2);
dy(2) = ... % your equation
dy(3) = y(4);
dy(4) = ... % your equation
And solve and plot:
[T,Y] = ode45(@focaultPendulum,tspan,initial_values);
plot(T,Y(:,1),T,Y(:,3))
Plus de réponses (2)
Grzegorz Knor
le 26 Oct 2011
You have to rewrite your equations:
x'' + C*x - 2*P*y' = 0
y'' + C*y + 2*P*x' = 0
to form:
u = y' --> u' = y''
v = x' --> v' = x''
v' + C*x - 2Pu = 0
u' + C*y + 2Pv = 0
assume:
x(1) = x
x(2) = y
x(3) = u
x(4) = v
then:
function xprime = odetest(t,x)
% define P & C
xprime(1) = x(4);
xprime(2) = x(3);
xprime(3) = -2*P*x(4) - C^2*x(2);
xprime(4) = 2*P*x(3) - C^2*x(1);
xprime = xprime(:);
2 commentaires
arnold ing
le 21 Jan 2018
Modifié(e) : arnold ing
le 21 Jan 2018
Can anyone help me with euler forward to solve foucault pendulum ODEs. i got an error calling the function E=euler_2(@edf1,@edff2,0,30,5/10,0,100)
function dy=edf2(z)
dy = zeros(4,1);
dy(2) = z(4);
dy(4) = -1.4580e-04*sin(pi/4)*z(2) - 0.9085*z(3);
end
function dy=edf1(z)
dy = zeros(4,1);
dy(1) = z(3);
dy(3) = 1.4580e-04*sin(pi/4)*z(4) - 0.9085*z(1);
end
function E=euler_2(f1,f2,x0,b,y01,y02,N)
% euler frw
% in [x0,b]
% step size h=(b-x0)/N
h=(b-x0)/N;
X=zeros(1,N+1);
Y1=zeros(1,N+1);
Y2=zeros(1,N+1);
X=(x0:h:b); % Rrjeti i pikave xi+1-xi=h
Y1(1)=y01; % Kushti fillestar y1(x0)=y01
Y2(1)=y02; % Kushti fillestar y2(x0)=y02
for i=1:N
Y1(i+1)=Y1(i)+h*feval(f1,X(i),Y1(i),Y2(i));
Y2(i+1)=Y2(i)+h*feval(f2,X(i),Y1(i),Y2(i));
end
E=[X' Y1' Y2'];
plot(X,Y1,'*',X,Y2,'o')
end
0 commentaires
Voir également
Catégories
En savoir plus sur Equation Solving dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!