Minimize the sum of squared errors between the experimental and predicted data in order to calculate two parameters
20 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
ORESTE SAINT-JEAN
le 28 Mar 2023
Commenté : Mathieu NOE
le 29 Mar 2023
In my research work, I use a model and I want to minimize the sum of squared errors between the experimental and predicted data in order to calculate two parameters.
The experimental data are:
u exp: [0.709; 0.773 ;0.823 ;0.849 ;0.884 ;0.927 ;0.981 ;1.026 ;1.054 ;1.053 ;1.048;1.039] ;
observed at z=[ 0.006;0.012;0.018;0.024;0.03;0.046;0.069;0.091;0.122;0.137;0.152;0.162];
The equation of the model that I use is:
u model=0.1073*((log(0.13/z)-1/3*(1-(z/0.13)^3)+2*a*(1+(b)^0.5)*cos(11.89*z)); and I want to calculate the parameters “a” et “b” by minimizing the sum of squared errors between “u exp” and “u model”.
Someone here can help me please?
Thank you already for your help!
0 commentaires
Réponse acceptée
Davide Masiello
le 29 Mar 2023
Modifié(e) : Torsten
le 29 Mar 2023
You can use MatLab's fmincon.
z = [0.006;0.012;0.018;0.024;0.03;0.046;0.069;0.091;0.122;0.137;0.152;0.162];
u_exp = [0.709;0.773;0.823;0.849;0.884;0.927;0.981;1.026;1.054;1.053;1.048;1.039];
u_mod = @(P) 0.1073*(log(0.13./z)-1/3*(1-(z/0.13).^3)+2*P(1).*(1+P(2).^0.5).*cos(11.89*z));
sum_sq_err = @(P) sum((u_exp-u_mod(P)).^2);
P = fmincon(sum_sq_err,[0.1,0.1]);
a = P(1)
b = P(2)
hold on
plot(z,u_exp,'o')
plot(z,u_mod(P))
hold off
grid on
4 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Statistics and Machine Learning Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!