Integration using BVP4C
    3 vues (au cours des 30 derniers jours)
  
       Afficher commentaires plus anciens
    
I have a coupled non-linear differential equations
 (d^2 f)/(dy^2 )+m2*g2*dB/dy-2*i*R2*g1*f - g3*G1*y - R4*g1 = 0
(d^2 B)/(dy^2 )+t4/(1-i*H1)*df/dy=0
Boundary conditions are 
f=0 at y=0
f=C1 at y=1
 And 
 dB/dy-(t4/(P1* (1-i*H1 ) ))* B=0 at y=0 
dB/dy+(t4/(P2 (1-i*H1 ) ))* B=0 at y=1
While I run the program I get the value of U1 using the boundary conditions (y=0 and y=1), but now i need to get the integration of U1, between the limits 0 to 1. 

In BVP4c, the solution is obtained using the boundary conditions (y=0 and y=1), but now how to get the solution? Please help me
 Matlab programs is enclosed for your reference
close all
clc
p=1;
P1=2;
P2=2;
b1=0.00021;
b2=0.000058;
S1=0.005;
S2=580000;
G1=2;
m2=20;
R1=997.1;
R2=3;
C1=1;
R3=4420;
B=0.5;
H1=0.25;
K1=3;
R4=1;
t1=(1./((1-p).^2.5));
t2=(1-p)+(p.*(R3./R1));
t3=(1-p)+p.*((R3.*b2)./(R1.*b1));
S=(S2./S1);
t4=1-((3*(1-S).*p)./((2+S)+(1-S).*p));
g1=t2./t1;
g2=1/t1;
g3=t3./t1;
m1=(t4./(P1.*(1-1i.*H1)));
m2=(t4./(P2.*(1-1i.*H1)));
dydx=@(x,y)[y(3);
    y(4);
    -m2.*g2.*y(4)+2.*1i.*R2.*g1.*y(1)+g3.*G1.*x+R4.*g1;
    (-t4./(1-1i.*H1)).*y(3)];
BC = @(ya,yb)[ya(1);yb(1)-C1;ya(4)-m1.*ya(2);yb(4)+m2.*yb(2)];
yinit = [0.01;0.01;0.01;0.01];
solinit = bvpinit(linspace(0,1,50),yinit);
U1 = bvp4c(dydx,BC,solinit);       
hold on
7 commentaires
  Torsten
      
      
 le 9 Avr 2023
				Thanks a lot
You are welcome. I moved my comment to an answer (which now can be accepted).
Réponse acceptée
  Torsten
      
      
 le 9 Avr 2023
        
      Déplacé(e) : Torsten
      
      
 le 9 Avr 2023
  
      close all
clc
p=1;
P1=2;
P2=2;
b1=0.00021;
b2=0.000058;
S1=0.005;
S2=580000;
G1=2;
m2=20;
R1=997.1;
R2=3;
C1=1;
R3=4420;
B=0.5;
H1=0.25;
K1=3;
R4=1;
t1=(1./((1-p).^2.5));
t2=(1-p)+(p.*(R3./R1));
t3=(1-p)+p.*((R3.*b2)./(R1.*b1));
S=(S2./S1);
t4=1-((3*(1-S).*p)./((2+S)+(1-S).*p));
g1=t2./t1;
g2=1/t1;
g3=t3./t1;
m1=(t4./(P1.*(1-1i.*H1)));
m2=(t4./(P2.*(1-1i.*H1)));
dydx=@(x,y)[y(3);
    y(4);
    -m2.*g2.*y(4)+2.*1i.*R2.*g1.*y(1)+g3.*G1.*x+R4.*g1;
    (-t4./(1-1i.*H1)).*y(3);
    y(1)];
BC = @(ya,yb)[ya(1);yb(1)-C1;ya(4)-m1.*ya(2);yb(4)+m2.*yb(2);ya(5)];
yinit = [0.01;0.01;0.01;0.01;0];
solinit = bvpinit(linspace(0,1,50),yinit);
U1 = bvp4c(dydx,BC,solinit);  
hold on
% plot y1(x) = f(x)
plot(U1.x,real(U1.y(1,:)),'r')
% plot y5(x) = integral_{t=0}^(t=x} f(t) dt
plot(U1.x,real(U1.y(5,:)),'b')
hold off
grid on
% print y5(1) = integral_{t=0}^(t=1} f(t) dt
U1.y(5,end)
0 commentaires
Plus de réponses (0)
Voir également
Catégories
				En savoir plus sur Boundary Value Problems dans Help Center et File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
