Effacer les filtres
Effacer les filtres

How to do custom equation (non linear) regression?

34 vues (au cours des 30 derniers jours)
yehuda kristo
yehuda kristo le 12 Avr 2023
Commenté : Image Analyst le 12 Avr 2023
I need to find some constant from data that usually is shown in log-log scale, the equation related to the data would be y=(a*x^b)/(26.1-x). How do I find the a and b constants?

Réponse acceptée

Star Strider
Star Strider le 12 Avr 2023
There are several nonlinear parameter estimation function to choose from.
This uses fitnlm
yfcn = @(a,b,x) (a*x.^b)./(26.1-x);
T1 = readtable('experiment_data.xlsx');
x = T1.x;
y = T1.y;
B0 = rand(2,1);
mdl = fitnlm(x,y,@(b,x)yfcn(b(1),b(2),x), B0)
mdl =
Nonlinear regression model: y ~ yfcn(b1,b2,x) Estimated Coefficients: Estimate SE tStat pValue ________ _______ _______ _______ b1 0.059055 0.28207 0.20936 0.83475 b2 -1.6212 1.5325 -1.0578 0.29362 Number of observations: 75, Error degrees of freedom: 73 Root Mean Squared Error: 0.00156 R-Squared: -0.0655, Adjusted R-Squared -0.0801 F-statistic vs. zero model: 1.29, p-value = 0.282
xsrt = sort(x);
[ypred,yci] = predict(mdl,xsrt);
plot(x, y, '.', 'DisplayName','Data')
hold on
plot(xsrt, ypred, '-r', 'DisplayName','Function Fit')
plot(xsrt, yci, '--r', 'DisplayName','±95% Confidence Intervals')
hold off
The model is a statistically poor fit to the data and does not describe the data well.
  2 commentaires
yehuda kristo
yehuda kristo le 12 Avr 2023
Oh okay I understand it now, Thanks for the explanation Sir.
Star Strider
Star Strider le 12 Avr 2023
As always, my pleasure!

Connectez-vous pour commenter.

Plus de réponses (2)

Davide Masiello
Davide Masiello le 12 Avr 2023
Assume these are your experimental data
x = linspace(0,20,30);
y = rand(size(x))/3+(pi*x.^(sqrt(2)/2))./(26.1-x);
To find a and b you can do the following.
modelfun = @(p,x) (p(1)*x.^p(2))./(26.1-x);
par = nlinfit(x,y,modelfun,[1 1]);
a = par(1)
a = 6.3320
b = par(2)
b = 0.4825

Image Analyst
Image Analyst le 12 Avr 2023
I usually use fitnlm (fit non-linear model). You can specify the equation you want to fit to. I'm attaching some examples of fitnlm.
  4 commentaires
yehuda kristo
yehuda kristo le 12 Avr 2023
Here's my .m file and my x and y data
Image Analyst
Image Analyst le 12 Avr 2023
Well, looks like you're going to use Star's solution, so I won't bother, unless you really want me to.

Connectez-vous pour commenter.


En savoir plus sur Linear and Nonlinear Regression dans Help Center et File Exchange


Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by