Problem finding "valleys" in signal
30 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello,
I am using the findpeaks function to find the valleys in a signal, but it is not consistent and was wondering if there was a better way of doing this.
My code is below along with an image of a "missed" valley around the 8 second mark. Any help on this would be greatly appreciated.
[yfft_, freqvec_, yfft_dB_, freq_res] = calcFFT(temp_snip, 'hamming', Fs*100, Fs);
[fft_pks fft_locs] = findpeaks(yfft_, 'MinPeakHeight', 0.004);
BreathrateHz = freqvec_(fft_locs(2));
RespRate = (BreathrateHz * snippp)/2
%Get valleys
inverted_snip = max(temp_snip) - temp_snip;
snip_lo = max(inverted_snip);
[v1, vv] = findpeaks(inverted_snip, "MinPeakDistance", Fs*((RespRate)/2), "MinPeakHeight", snip_lo *.85); %-(Fs*BreathInstance_error))/5);
0 commentaires
Réponses (3)
Steven Lord
le 18 Mai 2023
Have you tried using islocalmin on your original data rather than findpeaks on the "flipped" data?
0 commentaires
Image Analyst
le 18 Mai 2023
Is it possible your MinPeakDistance is too large?
help sgolayfilt
0 commentaires
Star Strider
le 18 Mai 2023
I prefer using 'MinPeakProminence' instead of 'MinPeakHeight' since that is usually more robust.
t = linspace(0, 10);
y = 0.03*sin(2*pi*t*0.7) + 0.06 + randn(size(t))/100;
[pks,locs] = findpeaks(-y, 'MinPeakDistance', 10, 'MinPeakProminence',0.025);
figure
plot(t, y)
hold on
plot(t(locs), -pks, 'xr')
hold off
Adjust the 'MinPeakProminence' value to get the desired result with your data.
.
0 commentaires
Voir également
Catégories
En savoir plus sur Spectral Estimation dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!