How to use 5 function coupled each other using ODE45? it is possible?
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
cindyawati cindyawati
le 20 Juin 2023
Commenté : cindyawati cindyawati
le 20 Juin 2023
I have a coupled differential equation. I'm confused why my M3, O, and P values are 0. Even though the initial conditions M2, M3, O and P are 0 but only M2 has a value. Is there something wrong with the function?
function CM1 = mymode (t,M1,M2,M3,O,P)
M1= 10;
M2 = 0;
M3 = 0;
O = 0;
P=0;
delta=50;
gamma=75;
K1= 10^-4;
K2=5*10^-4;
K3=10^-3;
Ko=0.1;
n=3;
Oa=10;
Pa=100;
mu_1=10^-3;
mu_2=10^-3;
mu_3=10^-3;
mu_o=10^-4;
mu_p= 10^-5;
CM1= zeros(5,1);
CM1(1) = (delta*M1*(1-(M1/gamma))-2*K1*M1*M1-M1*(K2*M2)-((Oa-n)*K3*M1*M3)-((Pa-Oa)*Ko*M1*O)-(mu_1*M1));
CM1(2) = (K1*M1*M1)-(K2*M1*M2)-(mu_2*M2);
CM1(3) = (K2*M1*M2)-(K3*M1*M3)-(mu_3*M3);
CM1(4) = (K3*M1*M3)-(Ko*M1*O)-(mu_o*O);
CM1(5) = (Ko*M1*O)-(mu_p*P);
end
[t,M1,M2,M3,O,P] = ode45(@mymode, [0,100],[0,0.01])
plot (t,M1,M2,M3,O,P)
4 commentaires
Torsten
le 20 Juin 2023
Modifié(e) : Torsten
le 20 Juin 2023
This is a Runge-Kutta-4 code for your problem. Try to understand how "runge_kutta_RK4" works on your system of equations to do better next time.
tstart = 0.0;
tend = 100.0;
dt = 0.01;
T = (tstart:dt:tend).';
Y0 = [10 0 0 0 0];
f = @myode;
Y = runge_kutta_RK4(f,T,Y0);
M1 = Y(:,1);
M2 = Y(:,2);
M3 = Y(:,3);
O = Y(:,4);
P = Y(:,5);
figure
subplot(3,1,1)
plot(T,M1),grid, title('M1')
subplot(3,1,2)
plot(T,M2),grid, title('M2')
subplot(3,1,3)
plot(T,M3),grid, title('M3')
figure
subplot(2,1,1)
plot(T,O),grid, title('O')
subplot(2,1,2)
plot(T,P),grid, title('P')
function Y = runge_kutta_RK4(f,T,Y0)
N = numel(T);
n = numel(Y0);
Y = zeros(N,n);
Y(1,:) = Y0;
for i = 2:N
t = T(i-1);
y = Y(i-1,:);
h = T(i) - T(i-1);
k0 = f(t,y);
k1 = f(t+0.5*h,y+k0*0.5*h);
k2 = f(t+0.5*h,y+k1*0.5*h);
k3 = f(t+h,y+k2*h);
Y(i,:) = y + h/6*(k0+2*k1+2*k2+k3);
end
end
function CM1 = myode (~,MM)
M1 = MM(1);
M2 = MM(2);
M3 = MM(3);
O = MM(4);
P = MM(5);
delta=50;
gamma=75;
K1= 10^-4;
K2=5*10^-4;
K3=10^-3;
Ko=0.1;
n=3;
Oa=10;
Pa=100;
mu_1=10^-3;
mu_2=10^-3;
mu_3=10^-3;
mu_o=10^-4;
mu_p= 10^-5;
CM1= zeros(1,5);
CM1(1) = (delta*M1*(1-(M1/gamma))-2*K1*M1*M1-M1*(K2*M2)-((Oa-n)*K3*M1*M3)-((Pa-Oa)*Ko*M1*O)-(mu_1*M1));
CM1(2) = (K1*M1*M1)-(K2*M1*M2)-(mu_2*M2);
CM1(3) = (K2*M1*M2)-(K3*M1*M3)-(mu_3*M3);
CM1(4) = (K3*M1*M3)-(Ko*M1*O)-(mu_o*O);
CM1(5) = (Ko*M1*O)-(mu_p*P);
end
Réponse acceptée
Alan Stevens
le 20 Juin 2023
Better like this:
MM0 = [10, 0, 0, 0, 0];
tspan = [0 100];
[t, MM] = ode15s(@mymode, tspan,MM0);
M1 = MM(:,1);
M2 = MM(:,2);
M3 = MM(:,3);
O = MM(:,4);
P = MM(:,5);
figure
subplot(3,1,1)
plot(t,M1),grid, title('M1')
subplot(3,1,2)
plot(t,M2),grid, title('M2')
subplot(3,1,3)
plot(t,M3),grid, title('M3')
figure
subplot(2,1,1)
plot(t,O),grid, title('O')
subplot(2,1,2)
plot(t,P),grid, title('P')
function CM1 = mymode (~,MM)
M1 = MM(1);
M2 = MM(2);
M3 = MM(3);
O = MM(4);
P = MM(5);
delta=50;
gamma=75;
K1= 10^-4;
K2=5*10^-4;
K3=10^-3;
Ko=0.1;
n=3;
Oa=10;
Pa=100;
mu_1=10^-3;
mu_2=10^-3;
mu_3=10^-3;
mu_o=10^-4;
mu_p= 10^-5;
CM1= zeros(5,1);
CM1(1) = (delta*M1*(1-(M1/gamma))-2*K1*M1*M1-M1*(K2*M2)-((Oa-n)*K3*M1*M3)-((Pa-Oa)*Ko*M1*O)-(mu_1*M1));
CM1(2) = (K1*M1*M1)-(K2*M1*M2)-(mu_2*M2);
CM1(3) = (K2*M1*M2)-(K3*M1*M3)-(mu_3*M3);
CM1(4) = (K3*M1*M3)-(Ko*M1*O)-(mu_o*O);
CM1(5) = (Ko*M1*O)-(mu_p*P);
end
3 commentaires
Alan Stevens
le 20 Juin 2023
Yes, you can also use ode45 - it just uses more points over the time span.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!