Value for Function with 2nd order Central difference scheme

15 vues (au cours des 30 derniers jours)
VIKASH
VIKASH le 12 Août 2023
Réponse apportée : Anu le 30 Sep 2023
I am trying to write code for the above problem but getting wrong answer, Kindly help me to find the error in the code or suggest if there is any better alternate way to write code for the problem.
Right answer is 2.3563
c=1.5;
h=0.1;
x=(c-h):h:(c+h);
Fun=@(x) exp(x)-exp(-x)/2;
dFun=@(x) 2*exp(x)+2*exp(-x)/2;
F=Fun(x);
n=length(x);
dx= (F(:,end)-F(:,1))/(2*h)
dx = 4.6009

Réponse acceptée

Star Strider
Star Strider le 12 Août 2023
See First and Second Order Central Difference and add enclosing parentheses to the numerator of your implementation of the cosh function.
  2 commentaires
VBBV
VBBV le 12 Août 2023
Modifié(e) : VBBV le 12 Août 2023
c=1.5;
h=0.1;
x=(c-h):h:(c+h);
Fun=@(x) (exp(x)-exp(-x))/2; % parenthesis
dFun=@(x) 2*(exp(x)+exp(-x))/2; % parenthesis
F=Fun(x);
n=length(x);
dx= (F(:,end)-F(:,1))/(2*h)
dx = 2.3563
Anu
Anu le 30 Sep 2023
c = 1.5;
h = 0.1;
x = (c - h):h:(c + h);
Fun = @(x) (exp(x) - exp(-x)) / 2;
F = Fun(x);
n = length(x);
dx = (F(3) - F(1)) / (2 * h); % Corrected calculation of derivative at x=c

Connectez-vous pour commenter.

Plus de réponses (1)

Anu
Anu le 30 Sep 2023
  • c is the central point.
  • h is the step size.
  • x is a vector of values around c.
  • Fun is the function you want to calculate the derivative for.
  • F is the function values at the points in x.
  • dx calculates the derivative at the central point c using finite differences.

Catégories

En savoir plus sur Matrix Computations dans Help Center et File Exchange

Produits

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by