How to simulate the forced response of a transfer function
91 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Ali Almakhmari
le 15 Sep 2023
Réponse apportée : Sam Chak
le 16 Sep 2023
I have a transfer function G(s) = (1-s)/(s^2 + 2s+ 1) that I want to simulate while being under a forced input of u(t) = 2*cos(3t), but I am not sure how. I hope someone can help.
0 commentaires
Réponse acceptée
Star Strider
le 15 Sep 2023
s = tf('s');
G = (1-s)/(s^2 + 2*s + 1)
t = linspace(0, 1E+1, 1E+3);
u = @(t) 2*cos(3*t);
Gu = lsim(G,u(t),t);
figure
plot(t, u(t), ':k', 'DisplayName','u(t)')
hold on
plot(t, Gu, '-r', 'DisplayName','G(u(t))')
hold off
grid
legend('Location','best')
.
0 commentaires
Plus de réponses (1)
Sam Chak
le 16 Sep 2023
The 'lsim()' command is great when the Control System Toolbox is available. Here is an alternative approach to generate the time response G(s) subject to the forced input u(t) without using the Control System Toolbox. However, it requires the Symbolic Math Toolbox. Both toolboxes are bundled in the MATLAB and Simulink Student Suite.
You can also find examples at the following links:
syms F(s) u(t);
% Forced input function
u(t) = 2*cos(3*t)
U(s) = laplace(u)
% Plant transfer function
G(s) = (1 - s)/(s^2 + 2*s + 1)
% Convolution of two functions
F(s) = U*G
% Applying the inverse Laplace transform
f(t) = ilaplace(F, s, t)
% Plots
fplot(u, [0 10], ':k'), hold on, grid on
fplot(f, [0 10], 'LineWidth', 1.5), hold off
% Labels
xlabel('Time (seconds)')
ylabel('Amplitude')
legend('u(t)', 'f(t)')
title({'Time response of $G(s)$ due to input $u(t) = 2 \cos(3 t)$'}, 'Interpreter', 'LaTeX', 'FontSize', 12)
0 commentaires
Voir également
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!