Effacer les filtres
Effacer les filtres

How to simulate the forced response of a transfer function

29 vues (au cours des 30 derniers jours)
Ali Almakhmari
Ali Almakhmari le 15 Sep 2023
I have a transfer function G(s) = (1-s)/(s^2 + 2s+ 1) that I want to simulate while being under a forced input of u(t) = 2*cos(3t), but I am not sure how. I hope someone can help.

Réponse acceptée

Star Strider
Star Strider le 15 Sep 2023
Use the lsim function —
s = tf('s');
G = (1-s)/(s^2 + 2*s + 1)
G = -s + 1 ------------- s^2 + 2 s + 1 Continuous-time transfer function.
t = linspace(0, 1E+1, 1E+3);
u = @(t) 2*cos(3*t);
Gu = lsim(G,u(t),t);
plot(t, u(t), ':k', 'DisplayName','u(t)')
hold on
plot(t, Gu, '-r', 'DisplayName','G(u(t))')
hold off

Plus de réponses (1)

Sam Chak
Sam Chak le 16 Sep 2023
The 'lsim()' command is great when the Control System Toolbox is available. Here is an alternative approach to generate the time response G(s) subject to the forced input u(t) without using the Control System Toolbox. However, it requires the Symbolic Math Toolbox. Both toolboxes are bundled in the MATLAB and Simulink Student Suite.
You can also find examples at the following links:
syms F(s) u(t);
% Forced input function
u(t) = 2*cos(3*t)
u(t) = 
U(s) = laplace(u)
U(s) = 
% Plant transfer function
G(s) = (1 - s)/(s^2 + 2*s + 1)
G(s) = 
% Convolution of two functions
F(s) = U*G
F(s) = 
% Applying the inverse Laplace transform
f(t) = ilaplace(F, s, t)
f(t) = 
% Plots
fplot(u, [0 10], ':k'), hold on, grid on
fplot(f, [0 10], 'LineWidth', 1.5), hold off
% Labels
xlabel('Time (seconds)')
legend('u(t)', 'f(t)')
title({'Time response of $G(s)$ due to input $u(t) = 2 \cos(3 t)$'}, 'Interpreter', 'LaTeX', 'FontSize', 12)




Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by