How can I simplify this expression using "abs" function?

14 vues (au cours des 30 derniers jours)
Sathish
Sathish le 20 Nov 2023
Modifié(e) : Torsten le 20 Nov 2023
  8 commentaires
Sathish
Sathish le 20 Nov 2023
Thank you for your suggestions.
Walter Roberson
Walter Roberson le 20 Nov 2023
I think in the Wolfram output that the # stand in for the variable whose value has to be found to make the expression zero

Connectez-vous pour commenter.

Réponses (2)

Star Strider
Star Strider le 20 Nov 2023
This seems to work —
syms n k
Expr = 7/6 * symsum((2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^3 - k)-(k*(k+1)*(2*k+1))/6, k, 1, n-1)
Expr = 
Expr = simplify(Expr, 500)
Expr = 
.
  5 commentaires
Dyuman Joshi
Dyuman Joshi le 20 Nov 2023
The abs() call is inside the symsum() call.
Star Strider
Star Strider le 20 Nov 2023
Modifié(e) : Star Strider le 20 Nov 2023
Edited —
syms n k
Expr = symsum(abs((2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^2 - k)/6-(k*(k+1)*(2*k+1))/6), k, 1, n-1)
Expr = 
Expr = simplify(Expr, 400)
Expr = 
.

Connectez-vous pour commenter.


Torsten
Torsten le 20 Nov 2023
Modifié(e) : Torsten le 20 Nov 2023
You must determine the value for k0 where the expression
2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^2 - k - k*(k+1)*(2*k+1)
changes sign from positive to negative. Then you can add
1/6*(2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^2 - k - k*(k+1)*(2*k+1))
from k = 1 to k = floor(k0) and add
-1/6*(2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^2 - k - k*(k+1)*(2*k+1)))
from k = floor(k0)+1 to k = n-1.
syms n k
p = simplify(2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^2 - k - k*(k+1)*(2*k+1))
p = 
s = solve(p,k,'MaxDegree',3)
s = 
result = simplify(1/6*symsum(2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^2 - k - k*(k+1)*(2*k+1),k,1,floor(s(1)))-...
1/6*symsum(2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^2 - k - k*(k+1)*(2*k+1),k,floor(s(1))+1,n-1))
result = 
subs(result,n,13)
ans = 
6444
k = 1:12;
n = 13;
expr = 1/6*abs(2*n^3 + 3*n^2 + n - 2*k.^3 - 3*k.^2 - k - k.*(k+1).*(2*k+1))
expr = 1×12
817 809 791 759 709 637 539 411 249 49 193 481
sum(expr)
ans = 6444

Catégories

En savoir plus sur Mathematics dans Help Center et File Exchange

Tags

Produits


Version

R2015a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by