exponential regression functions with error in input values

5 vues (au cours des 30 derniers jours)
Benjamin Wilson
Benjamin Wilson le 22 Nov 2023
Hi, I am trying to fit a regression model that should look like something of the form y = e^(a-bx) for some positive constants a and b. I have been perviously using the linear least squares method after taking the log of both sides and then fitting a linear model and this works. However, due to some erros in my input data this will not work for the occasion where y = 0 for obvious reasons. The issue is I need to fit an exponential line that follows the points for example [4,100], [25,50], [100,0]. This line should remain postive although the point [100,0] is where the failure arises. Any help would be greatly appreciated!

Réponse acceptée

Fabio Freschi
Fabio Freschi le 22 Nov 2023
Modifié(e) : Fabio Freschi le 22 Nov 2023
you can use lsqnonlin or lsqcurvefit
clear variables, close all
% data
x = [4 25 100];
y = [100 50 0];
% fitting function
yfit = @(p,x) exp(p(1)-p(2)*x);
% nonlin problem
f = @(p) yfit(p,x)-y;
% initial guess
p0 = [1 1];
% use lsqnonlin
pfit1 = lsqnonlin(f,p0);
Local minimum possible. lsqnonlin stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.
% use built-in lsqcurvefit
pfit2 = lsqcurvefit(yfit,p0,x,y);
Local minimum possible. lsqcurvefit stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.
% plot
figure,hold on;
plot(x,y,'o')
xfit = linspace(min(x),max(x),100);
plot(xfit,yfit(pfit1,xfit))
plot(xfit,yfit(pfit2,xfit))

Plus de réponses (1)

Star Strider
Star Strider le 22 Nov 2023
There are other options, however everyone hass fminsearch, so using it —
x = [4; 25; 100];
y = [100; 50; 0];
% objfcn = @(b,x) b(1) .* exp(b(2) - b(3).*x);
objfcn = @(b,x) exp(b(1) - b(2).*x);
[B,nres] = fminsearch(@(b)norm(y - objfcn(b,x)), rand(2,1))
B = 2×1
4.7478 0.0345
nres = 3.9186
xv = linspace(min(x), max(x), 50);
figure
plot(x, y, 'p')
hold on
plot(xv, objfcn(B,xv), '-r')
hold off
grid
The fitnlm function is more robust and provides statistics on the fit. Use the predict function to return the fitted curve and confidence region on the fit.
.

Catégories

En savoir plus sur Interpolation dans Help Center et File Exchange

Produits


Version

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by