Solving first order ODE with initial conditions and symbolic function
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
The code returns a solution involving a complex number. I know this is not correct because I have solved it in Mathematica. Is there a way to solve it in MATLAB? Below is my code with all variables defined:
% input parameters
Tinf=70+273.15;
Ti=20+273.15;
d=15e-2;
r=d/2;
cdepth=10/1100;
Tf=50+273.15;
cp=4183;
rho=994;
g=9.81;
mew=0.007196;
k=0.6107;
Pr=4.929
Beta=0.00347;
L=10e-2;
% define equations
kv=mew/rho;
Asc=pi*r^2;
V=pi*r^2*L;
m=rho*cp*V;
% Calculate the Ray Number
Gr =@(T) (g*Beta*(Tinf-T)*L^(3))/(kv^(2))
Ray =@(T) Gr(T)*Pr
Nu =@(T) 0.15*(Ray(T)^(1/3))
h =@(T) (Nu(T)*k)/(L)
syms T(t) ;
ode = m*diff(T) == Asc*h(T)*(Tinf-T)
cond = T(0) == Ti;
TSol(t) = dsolve(ode,cond)
disp(TSol)
2 commentaires
Dyuman Joshi
le 1 Déc 2023
Please share the mathematical definition of ODE that you are trying to solve.
Also, please share the output from Mathematica, along with the code used there.
Réponse acceptée
Torsten
le 1 Déc 2023
Modifié(e) : Torsten
le 1 Déc 2023
You solved it in your code. The second solution out of the three MATLAB returned is the "correct" one giving real-valued temperatures. You can ignore the complex component of size 1e-71. The three solutions result from the T^1/3 term in the Nusselt number.
% input parameters
Tinf=70+273.15;
Ti=20+273.15;
d=15e-2;
r=d/2;
cdepth=10/1100;
Tf=50+273.15;
cp=4183;
rho=994;
g=9.81;
mew=0.007196;
k=0.6107;
Pr=4.929;
Beta=0.00347;
L=10e-2;
% define equations
kv=mew/rho;
Asc=pi*r^2;
V=pi*r^2*L;
m=rho*cp*V;
syms T(t) t
% Calculate the Ray Number
Gr = g*Beta*(Tinf-T)*L^3/kv^2;
Ray = Gr*Pr;
Nu = 0.15*Ray^(1/3);
h = Nu*k/L;
ode = m*diff(T) == Asc*h*(Tinf-T);
Tsol = dsolve(ode,T(0)==Ti);
fplot(real(Tsol(2)),[0 10000])
tq = 2000;
Tq = double(subs(Tsol(2),t,tq))
4 commentaires
Plus de réponses (1)
Alan Stevens
le 1 Déc 2023
You can do it numerically as follows:
% input parameters
Tinf=70+273.15;
Ti=20+273.15;
d=15e-2;
r=d/2;
cdepth=10/1100;
Tf=50+273.15;
cp=4183;
rho=994;
g=9.81;
mew=0.007196;
k=0.6107;
Pr=4.929;
Beta=0.00347;
L=10e-2;
% define equations
kv=mew/rho;
Asc=pi*r^2;
V=pi*r^2*L;
m=rho*cp*V;
% Calculate the Ray Number
Gr =@(T) g*Beta*(Tinf-T)*L^3/kv^2;
Ray =@(T) Gr(T)*Pr;
Nu =@(T) 0.15*Ray(T)^(1/3);
h =@(T) Nu(T)*k/L;
dTdt = @(t,T)Asc/m*h(T)*(Tinf-T);
tend = 10^4;
tspan = [0 tend];
[t,Tsol] = ode45(dTdt, tspan, Ti);
plot(t,Tsol,[0 tend],[Tinf Tinf],'--'), grid
xlabel('t'), ylabel('T')
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!