How to get finer data sampling?

2 vues (au cours des 30 derniers jours)
Songlin Yue
Songlin Yue le 13 Déc 2023
Commenté : Star Strider le 13 Déc 2023
R0 = 0.917;
h0 = 1;
n = 8;
rk = 1;
k = 1;
d = 32/180*pi;
Lv0 = sqrt(h0.^2+2*R0.^2-2*R0.^2.*cos(d));
Ld0 = sqrt(h0.^2+2*R0.^2-2*R0.^2.*cos(d+2*pi/n));
Lv = @(h,y) sqrt(h.^2+2*R0.^2-2*R0.^2.*cos(d+y));
Ld = @(h,y) sqrt(h.^2+2*R0.^2-2*R0.^2.*cos(d+y+2*pi/n));
Uy = @(h,y) k*(1-Lv0./Lv(h,y)).*sin(y+d)+rk*k*(1-Ld0./Ld(h,y)).*sin(y+d+2*pi/n);
Uyp = fimplicit(Uy,[0 1.2 -80*pi/180 100*pi/180]);
h = Uyp.XData;
y = Uyp.YData;
The above figure is the solution lines of the implicit function Uy. Here I want to extract the XData and YData, but find that there only exist 357 samping data for x and y axis. I'm wondering is there any ways of gettting a finer sampling? For example, getting 10000 data between 0 and 1.2.

Réponse acceptée

Star Strider
Star Strider le 13 Déc 2023
Use the 'MeshDensity' name-value pair —
R0 = 0.917;
h0 = 1;
n = 8;
rk = 1;
k = 1;
d = 32/180*pi;
Lv0 = sqrt(h0.^2+2*R0.^2-2*R0.^2.*cos(d));
Ld0 = sqrt(h0.^2+2*R0.^2-2*R0.^2.*cos(d+2*pi/n));
Lv = @(h,y) sqrt(h.^2+2*R0.^2-2*R0.^2.*cos(d+y));
Ld = @(h,y) sqrt(h.^2+2*R0.^2-2*R0.^2.*cos(d+y+2*pi/n));
Uy = @(h,y) k*(1-Lv0./Lv(h,y)).*sin(y+d)+rk*k*(1-Ld0./Ld(h,y)).*sin(y+d+2*pi/n);
Uyp = fimplicit(Uy,[0 1.2 -80*pi/180 100*pi/180]);
h = Uyp.XData;
y = Uyp.YData % 359 Data Pairs
y = 1×359
-1.3963 -1.3878 -1.3753 -1.3748 -1.3631 -1.3544 -1.3522 -1.3422 -1.3334 -1.3328 -1.3242 -1.3161 -1.3125 -1.3086 -1.3015 -1.2948 -1.2915 -1.2885 -1.2826 -1.2770 -1.2718 -1.2706 -1.2668 -1.2620 -1.2576 -1.2533 -1.2497 -1.2493 -1.2455 -1.2419
Uyp = fimplicit(Uy,[0 1.2 -80*pi/180 100*pi/180], 'MeshDensity',5E+3);
h = Uyp.XData;
y = Uyp.YData % 11845 Data Pairs
y = 1×11845
-1.3963 -1.3962 -1.3958 -1.3956 -1.3953 -1.3950 -1.3949 -1.3945 -1.3944 -1.3940 -1.3937 -1.3936 -1.3932 -1.3931 -1.3928 -1.3925 -1.3923 -1.3919 -1.3919 -1.3915 -1.3912 -1.3911 -1.3907 -1.3906 -1.3902 -1.3900 -1.3898 -1.3894 -1.3894 -1.3890
X = h(:);
Y = y(:);
XY = [X Y];
XY = rmmissing(XY);
X = XY(:,1);
Y = XY(:,2);
cidx = clusterdata(Y(:), 3);
[Ucidx,~,idx] = unique(cidx);
segments = accumarray(idx, (1:numel(idx)).', [], @(x){[X(x) Y(x)]})
segments = 3×1 cell array
{6677×2 double} { 833×2 double} {4333×2 double}
figure
hold on
for k = 1:size(segments,1)
plot(segments{k}(:,1), segments{k}(:,2), 'LineWidth',3, 'DisplayName',["Line #"+k])
end
hold off
grid
legend('Location','best')
axl = axis;
figure
plot(segments{1}(:,1), segments{1}(:,2), 'LineWidth',3)
grid
title('Upper Line Only')
axis(axl)
It still works correctly with my earlier code.
.
  2 commentaires
Songlin Yue
Songlin Yue le 13 Déc 2023
Thank you very much for your help of these 2 questions.
Star Strider
Star Strider le 13 Déc 2023
As always, my pleasure!
They are both interesting!

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Smoothing dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by