How can I resolve the "Unable to solve collocation" error in MATLAB when trying to solve a nonlinear differential equation with nonlinear boundary conditions?
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
MIT6()
%%
function MIT6
clc
close all
format long
global A B eta
A =10 ; % INTERNAL RADIUS
B=200; %% EXTERNEL RADIUS
eta = B / A; % THICKNESS RATIO
Mesh=100 ; %% MESHING
Pi = 0:0.01:2.5 %% APPLIED INNER PRESSURE
R = linspace(A, B, Mesh);
Lambda_theta = zeros(length(Pi), 1);
r_at_A = zeros(length(Pi), length(R)); %%% Specifying the size of matrix containing internal radius
for ik = 1:length(Pi)
%options = bvpset('stats', 'on', 'NMax', 50000);
solinit=bvpinit(R ,@Guess);
sol=bvp4c(@BVP_ODE,@BC,solinit)%options );
zz = deval(sol,R );
r_at_A(ik,:) = zz(1,:);
Lambda_theta(ik) = zz(1, 1) / A;
display(r_at_A)
figure(1)
hold on
plot(sol.x,sol.y(1,:),'LineWidth',3)
end
%%%%%% deformed inner radius at A
a_at_A = (r_at_A(:,1))/A;
%% GRAPHICAL PART %%%%%
figure(2)
hold on
set(gca,'FontSize',16)
plot(a_at_A,Pi,'lineWidth',3)
set(get(gca,'Ylabel'),'Rotation',0)
ylabel('$P$','Interpreter','LaTeX','FontSize',20, 'FontWeight', 'normal', 'FontName', 'Times');
% xlabel('$\Lambda_a ','Interpreter','LaTeX','FontSize',20, 'FontWeight', 'normal', 'FontName', 'Times');
xlabel('$\lambda_a$', 'Interpreter', 'latex', 'FontSize', 20, 'FontWeight', 'normal', 'FontName', 'Times');
grid on
hLegend=legend(['\eta =', num2str(eta)],'Location','SE')
% legend('boxoff')
% legend('Orientation','vertical')
set(hLegend, 'FontSize',18, 'Position', [0.7, 0.8, 0.1, 0.1]);
% Définir une boîte autour du graphe
ax = gca; % Récupérer l'objet axes actuel
set(ax, 'Box', 'on'); % Activer la boîte autour du graphe
% title('$\alpha = 5$', 'FontSize', 16, 'FontWeight', 'bold', 'Color', 'black', 'Interpreter', 'latex');
% %%
% % Add annotations
% [~, maxIndex] = max(Pi);
% text(a_at_A(maxIndex), Pi(maxIndex), 'Maximum', 'VerticalAlignment', 'bottom', 'HorizontalAlignment', 'right');
% xlabel('a/A');
% ylabel('Pi');
% title('Pi vs. a/A');
%
%
%%
% Ajouter la boîte de texte
annotation('textbox', [0.2, 0.6, 0.1, 0.1], 'String', ['Pmax : ', num2str(Pmax)],...
'FitBoxToText', 'on', 'BackgroundColor','white', 'EdgeColor', 'black','Interpreter', 'latex');
%%
% % save('pqfile.txt', 'a_at_A', '-ascii');
% Save Lambda_theta to a file (Excel format)
excelFileName = 'Lambda_theta.xlsx';
Lambda_theta_cell = num2cell(Lambda_theta);
%xlswrite(excelFileName, Lambda_theta_cell);
%% % STTING THE SYSYETME OF ODE
function dxdy = BVP_ODE(R, y)
dxdy = [y(2);
(2/3)*y(2)/R-(2/3)*(y(2)^4/y(1)^3)*R^2];
end
%%
% SETING THE BOUNDARY CONDITION
function res = BC(ya, yb)
res = [1 - A^2 / (ya(1)^2 * ya(2)^3) + Pi(ik);
1 - B^2 / (yb(1)^2 * yb(2)^3)];
end
function U = Guess(R)
U = [ 1 % Radial displacement profile
1]; % Initial guess for the second variable
% Initial guess for the second variable
end
end
7 commentaires
Torsten
le 3 Jan 2024
My issue lies in the fact that the pressure curve as a function of the deformed inner radius does not decrease once it reaches its maximum value.
Looking at your solution curves, I don't know what you mean (see above).
Réponses (0)
Voir également
Catégories
En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!